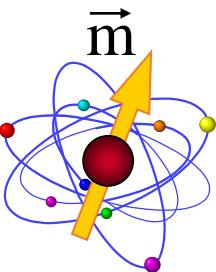


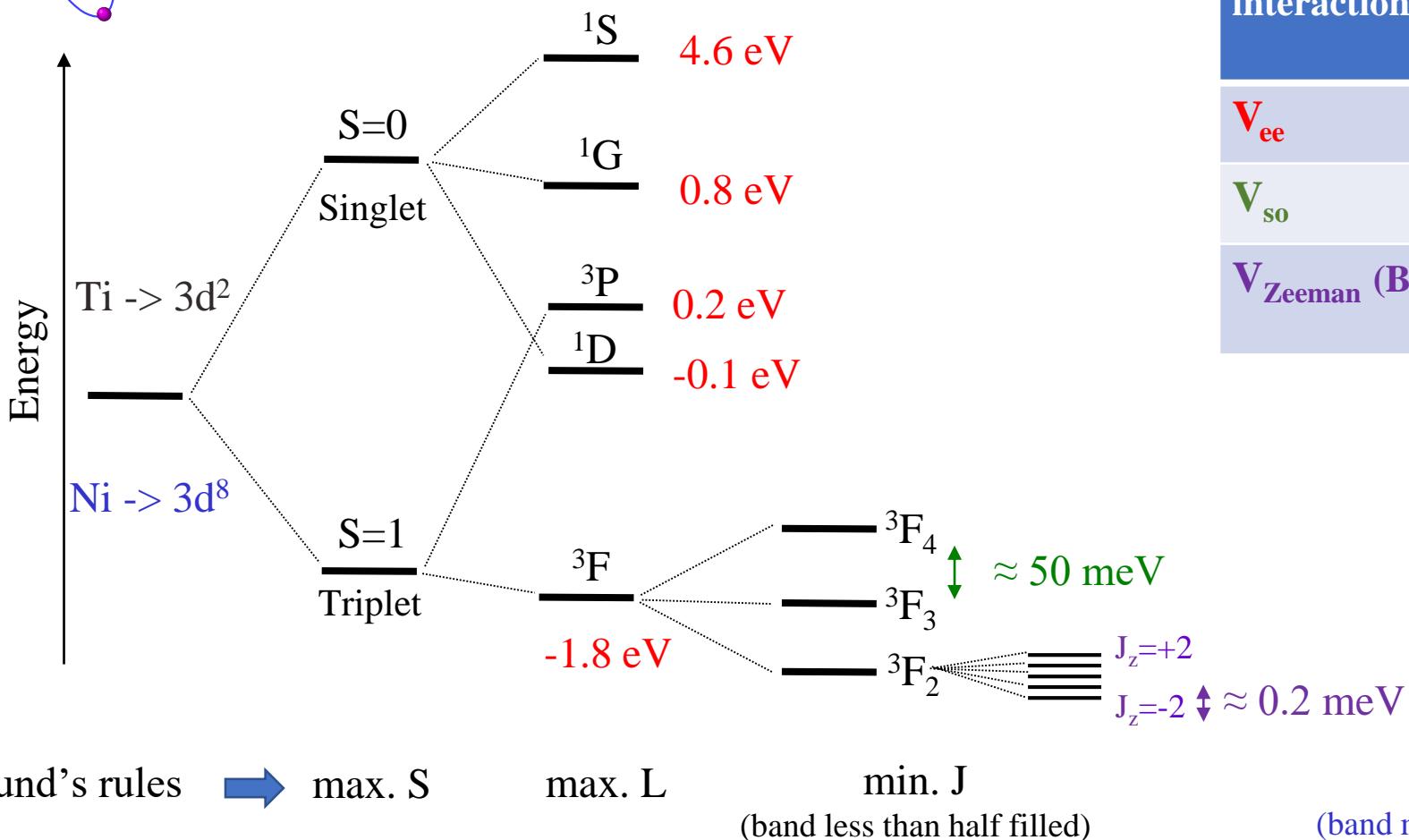
Lecture 2

From atom to bulk magnetism

Energy spectrum of an isolated 3d atom



$$H_{atom} = \sum_{i=1}^z \left(\frac{p_i^2}{2me} + eV(r_i) \right) + \sum_{i < j} \frac{e^2}{|r_i - r_j|} + \sum_{i=1}^z (\mathbf{l}_i \cdot \mathbf{s}_i) \xi_{nl}(r_i) + \mu_B (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B} = H_C + V_{ee} + V_{so} + V_{Zeeman}$$



interaction term	3d transition metals	4f rare earths
V_{ee}	1 eV	1 eV
V_{so}	50-100 meV	300-500 meV
V_{Zeeman} ($B=1T$)	0.1 -0.2 meV	0.1 -0.6 meV

$$V_{ee} = \sum_{i < j}^z \frac{e^2}{|r_i - r_j|}$$

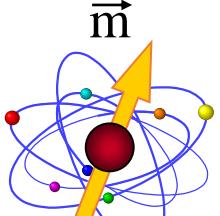
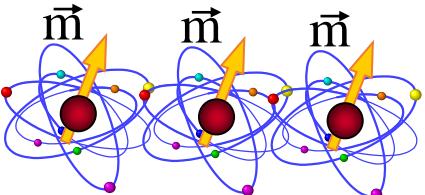
$$V_{so} = \sum_{i=1}^z (\mathbf{l}_i \cdot \mathbf{s}_i) \xi(r_i)$$

$$V_{Zee} = \mu_B (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B}$$

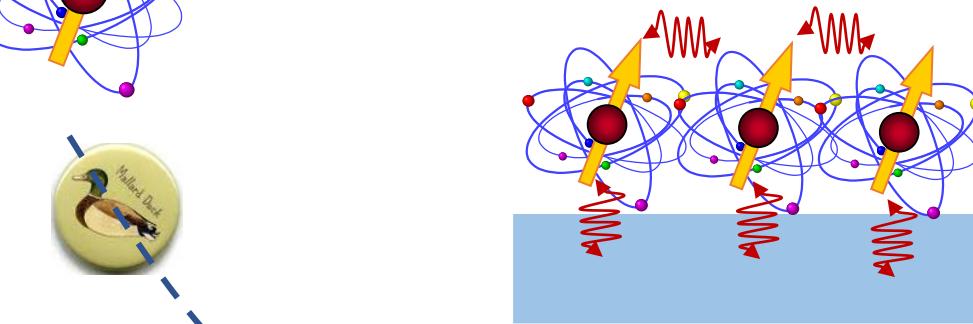
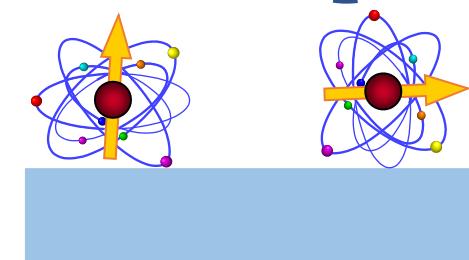
Spectroscopic notation of multiplets terms: $^{2S+1}X_J$ with $X = S, P, D, F, G, H, I, \dots$ for $L = 0, 1, 2, 3, 4, 5, 6, \dots$

The spintronics “goose game”

Atom magnetism



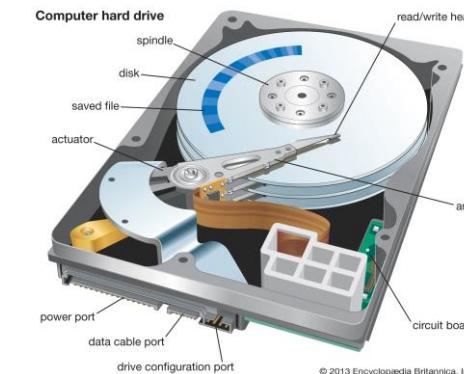
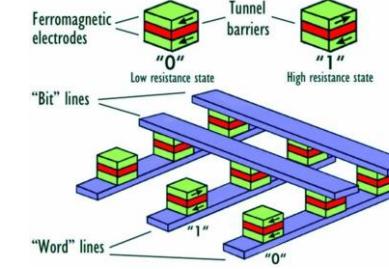
magnetic moment in a cluster and/or on a support



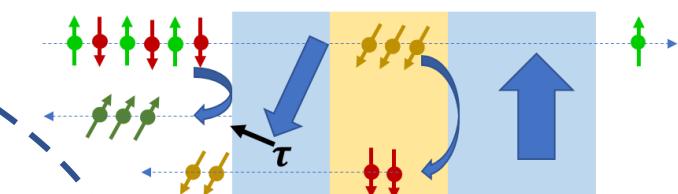
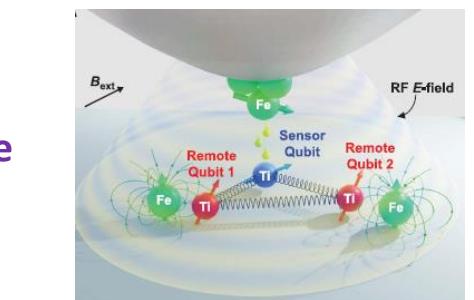
Magnetization easy axis

interactions between spins and with the supporting substrate

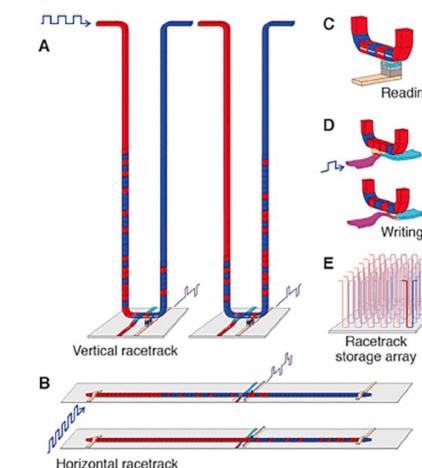
applications



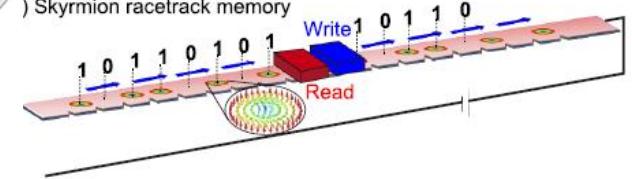
STT - SOT



Future



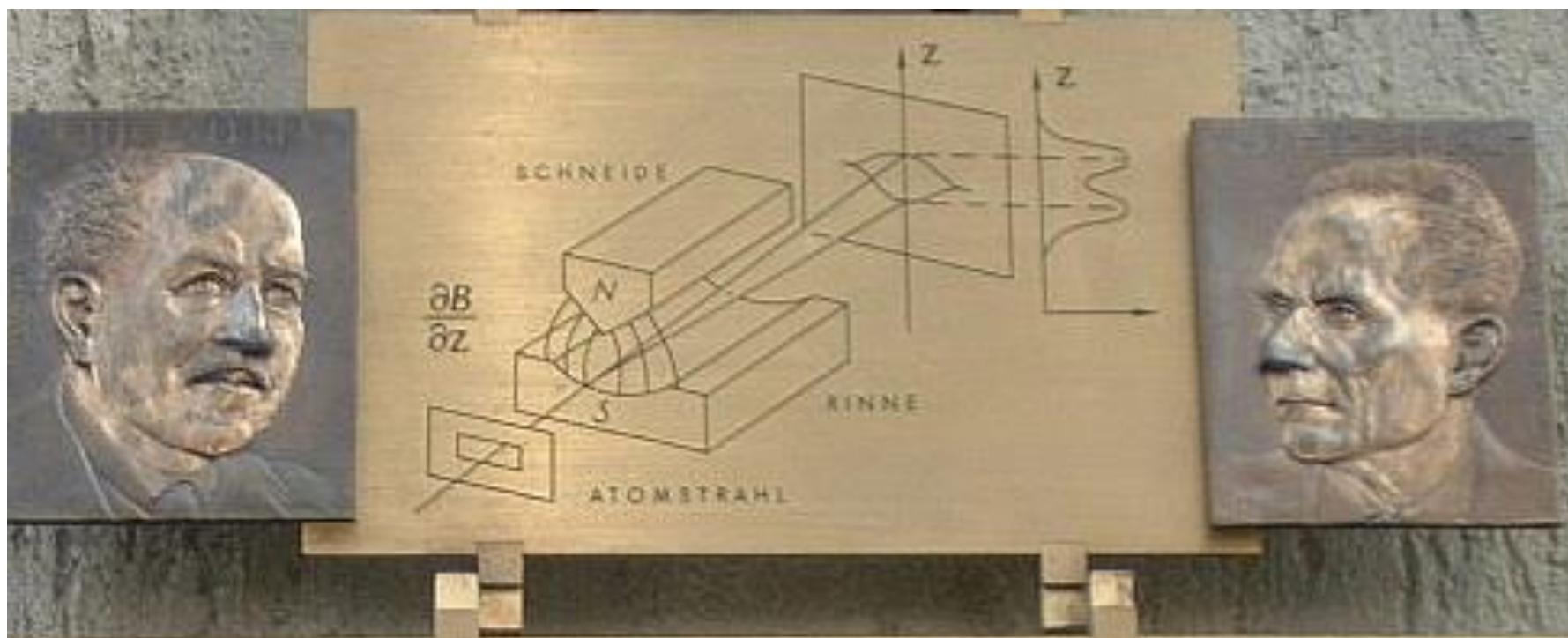
Skymion racetrack memory



Stern-Gerlach experiment

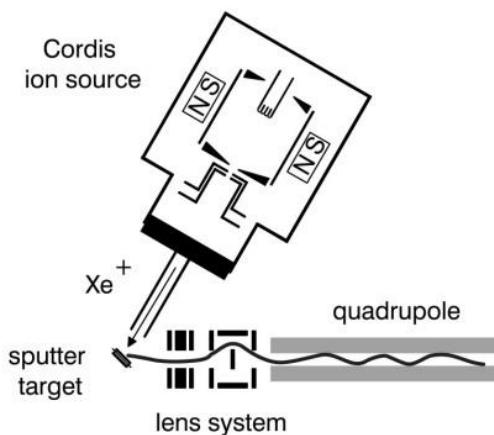
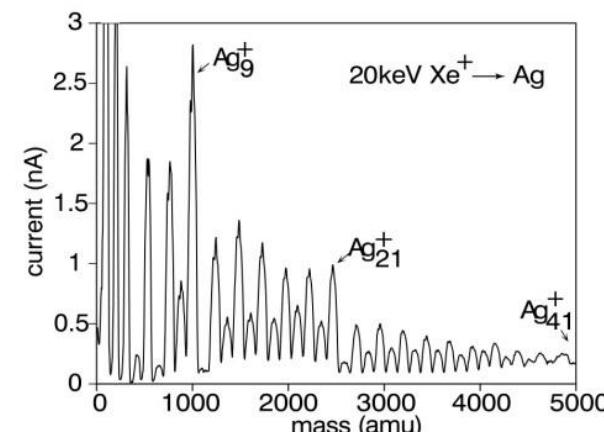
Beam of Ag atoms through a non-uniform magnetic field: the atoms deviate depending on their spin moment

Ag: [Kr] 4d¹⁰ 5s¹ \longrightarrow $L=0; S=1/2, S_z=J_z=\pm 1/2$

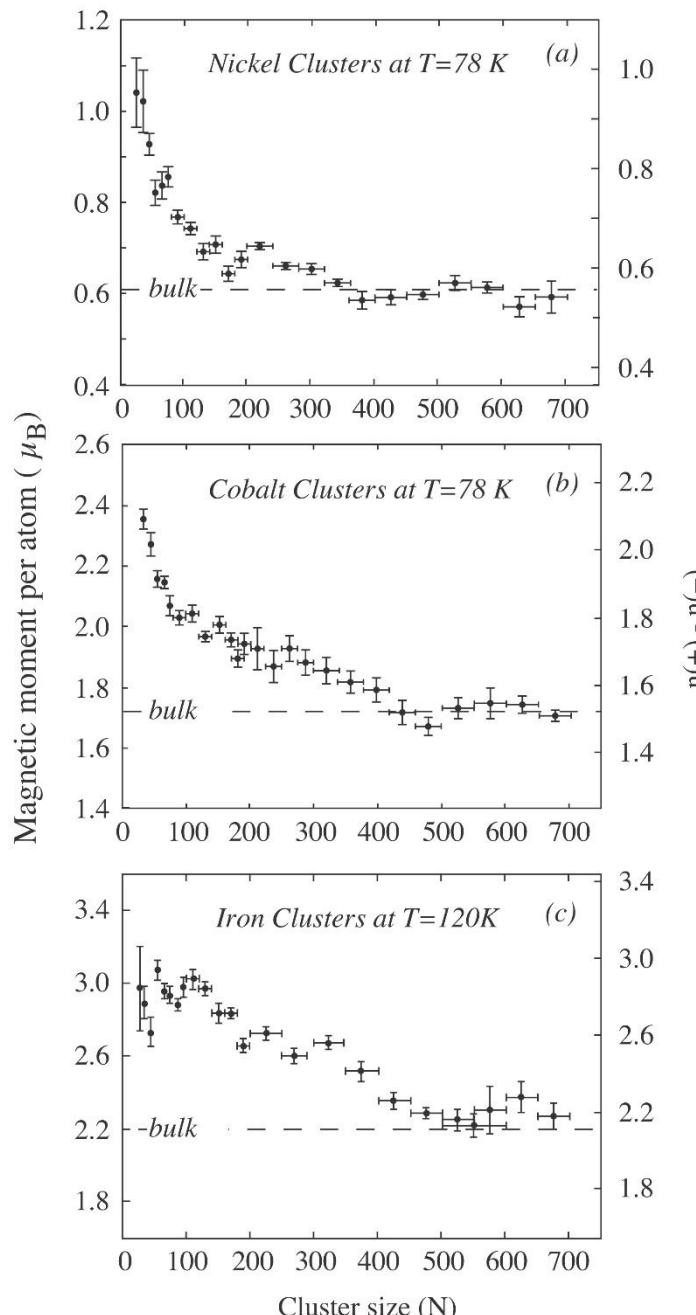


Same experiment with an Ag cluster would produce a single spot !!!

Stern-Gerlach experiment with 3d metals clusters

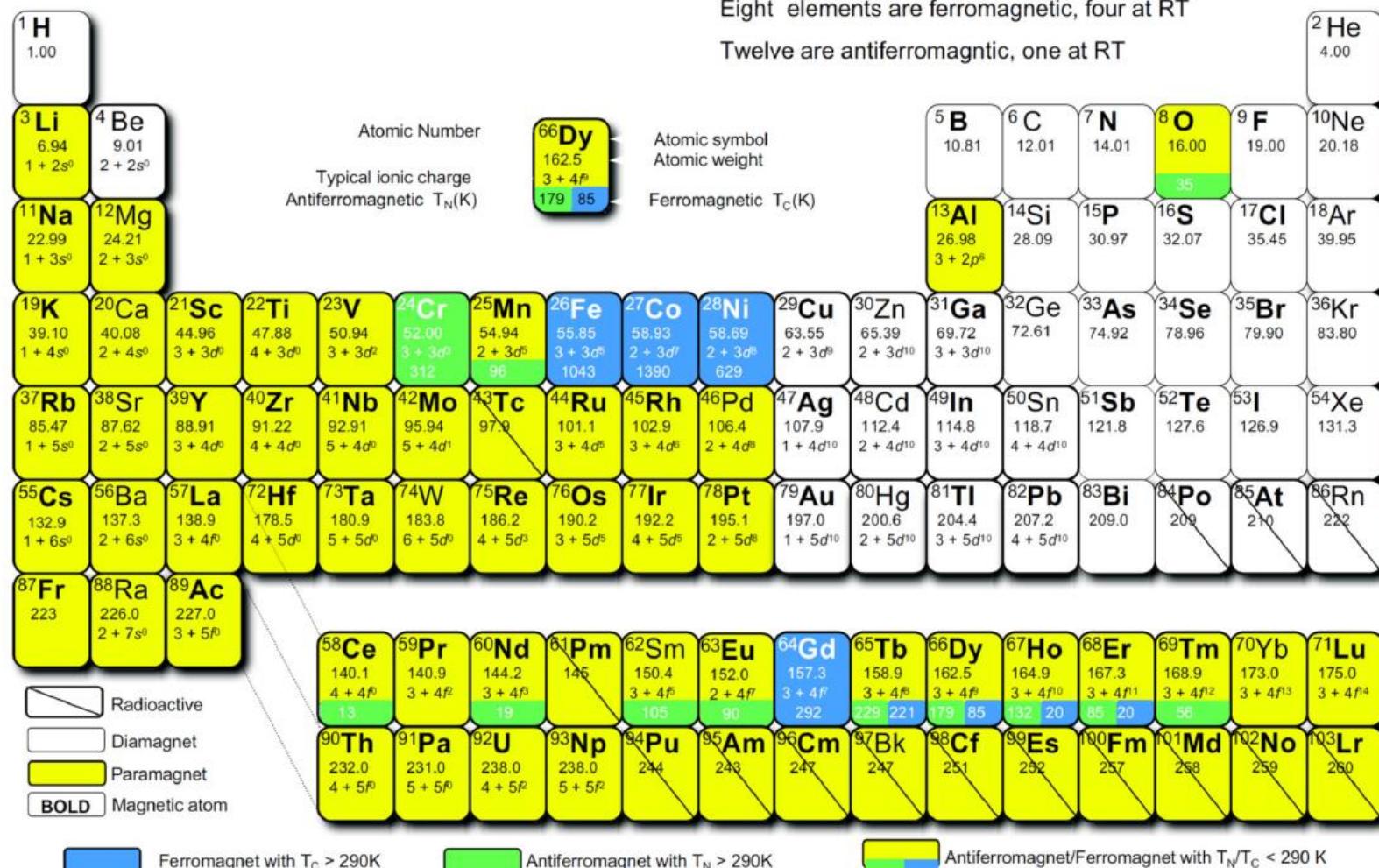


Below about 200-300 atoms per cluster the magnetic moment strongly increases with respect to bulk values



Magnetic moment in solids

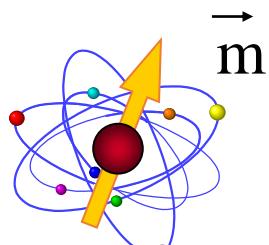
The Magnetic Periodic Table



J.M.D. Coey, *Magnetism and magnetic materials* (Cambridge Univ. Press)

- Bulk (at room T): only a few elements (Fe, Co, and Ni) have a magnetic moment
- Atomic scale: all atoms except noble gas have a magnetic moment (due to unfilled electronic shells)

atom

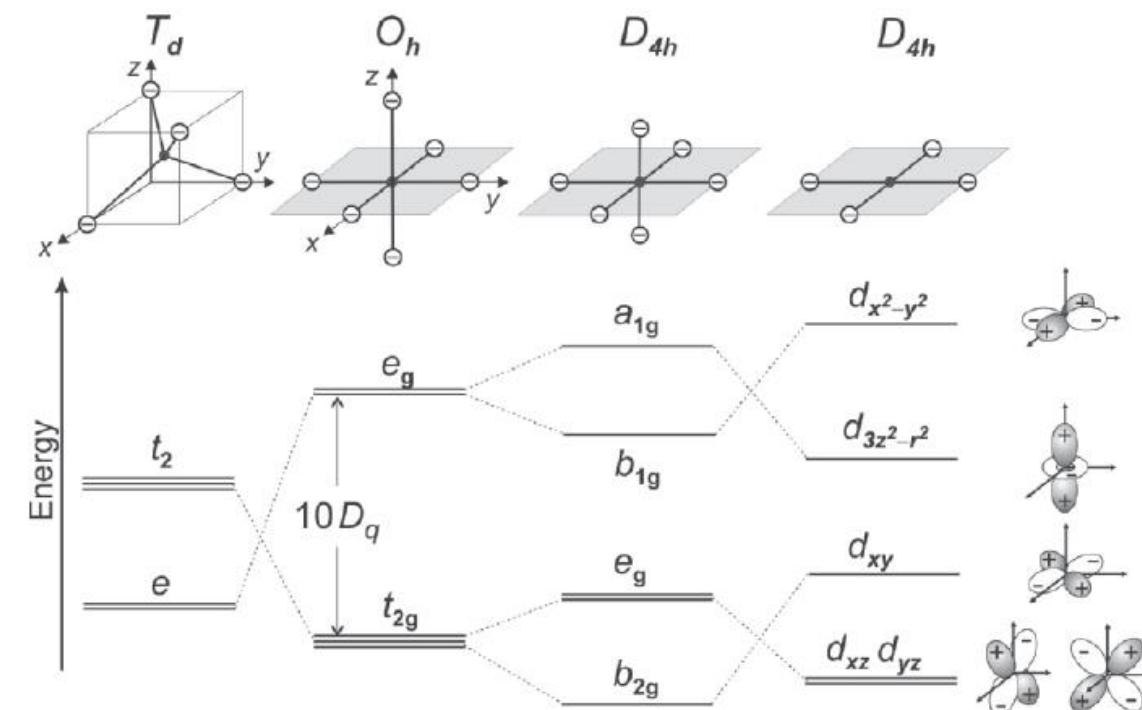


$$CF = 0$$

(the 3d orbitals are degenerate)

- 1) Crystal field (CF) : bond formation
 - Broken orbital degeneracy
 - Orbitals (real wave function)
 - Quenching orbital moment: $L \approx 0$

$$d_{xz} = a Y_2^1 + b Y_2^{-1} \quad d_{xy} = a Y_2^{-2} - b Y_2^2$$

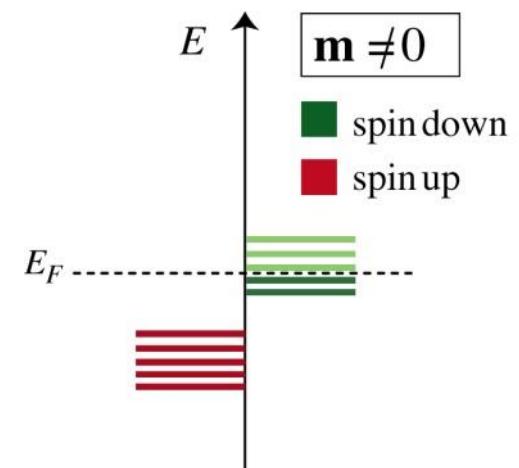
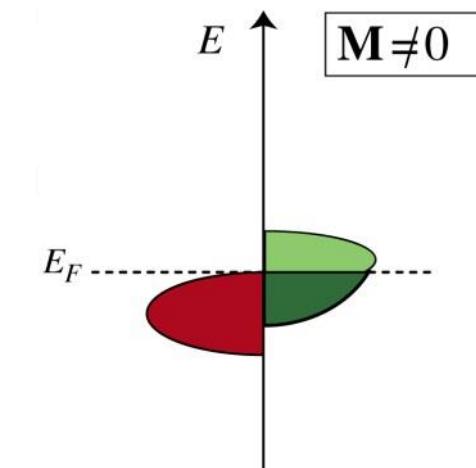


$$d_{xz}, d_{yz}, d_{x^2-y^2}, d_{xy}, d_{3z^2-r^2}$$

N.B.: $d_{3z^2-r^2} \Leftrightarrow d_{z^2}$

bulk

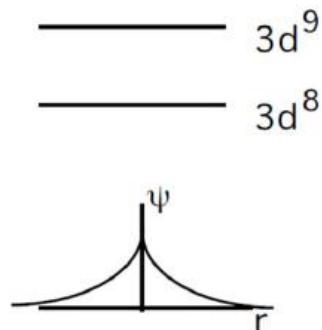
- 2) Electronic band formation



LOCALIZED MAGNETISM

Integral number of 3d or 4f electrons on the ion core; Integral number of unpaired spins; Discrete energy levels.

with



Ex: NiO
 CoO
 Fe_2O_3

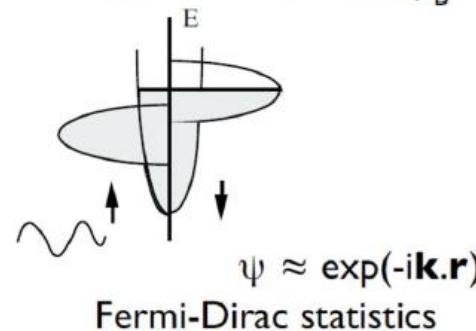
$$\psi \approx \exp(-r/a_0)$$

Boltzmann statistics

DELOCALIZED MAGNETISM

Nonintegral number of unpaired spins per atom.

Spin-polarized energy bands
strong correlations.



Ex: Ni , Co , Fe
(metallic)

4f metals	<i>localized electrons</i>
4f compounds	<i>localized electrons</i>
3d compounds	<i>localized/delocalized electrons</i>
3d metals	<i>delocalized electrons</i> .

Above the Curie temperature, neither localized nor delocalized moments disappear, they just become disordered in a paramagnetic state when $T > T_C$.

Local coordination: crystal (ligand) field

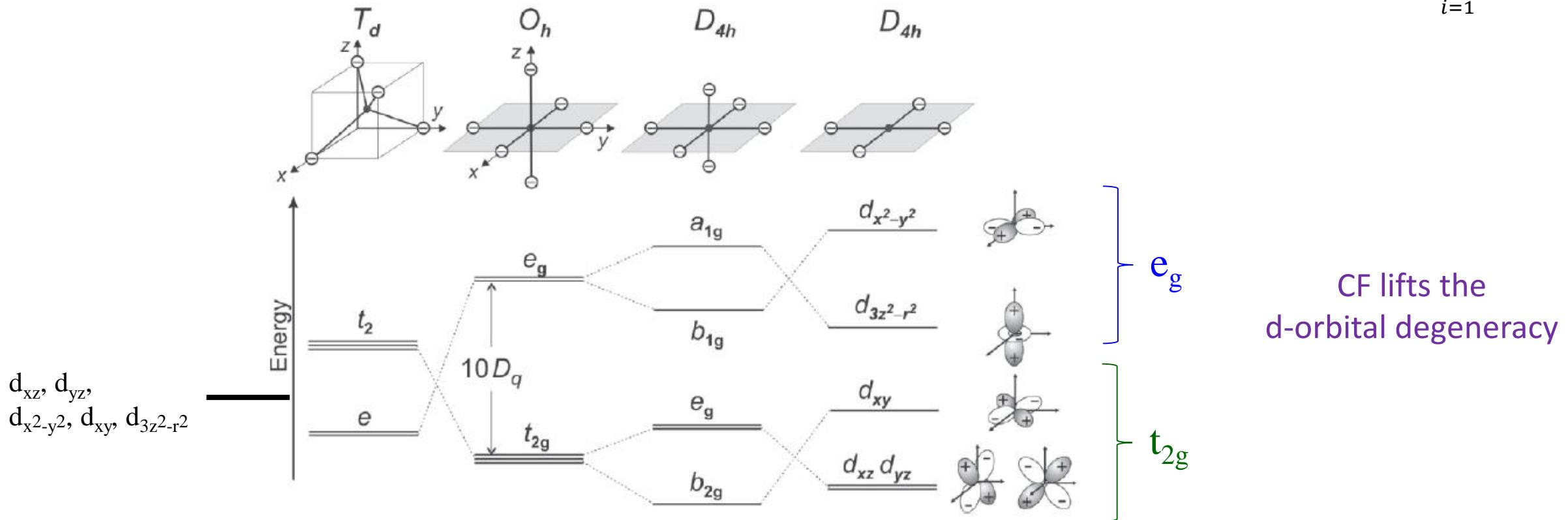
In the crystal (ligand) field theory the effect of the surrounding atoms is described by an effective potential (localized electrons)

$$H = H_{\text{free atom}} + CF$$

$$CF = -e V(r)$$

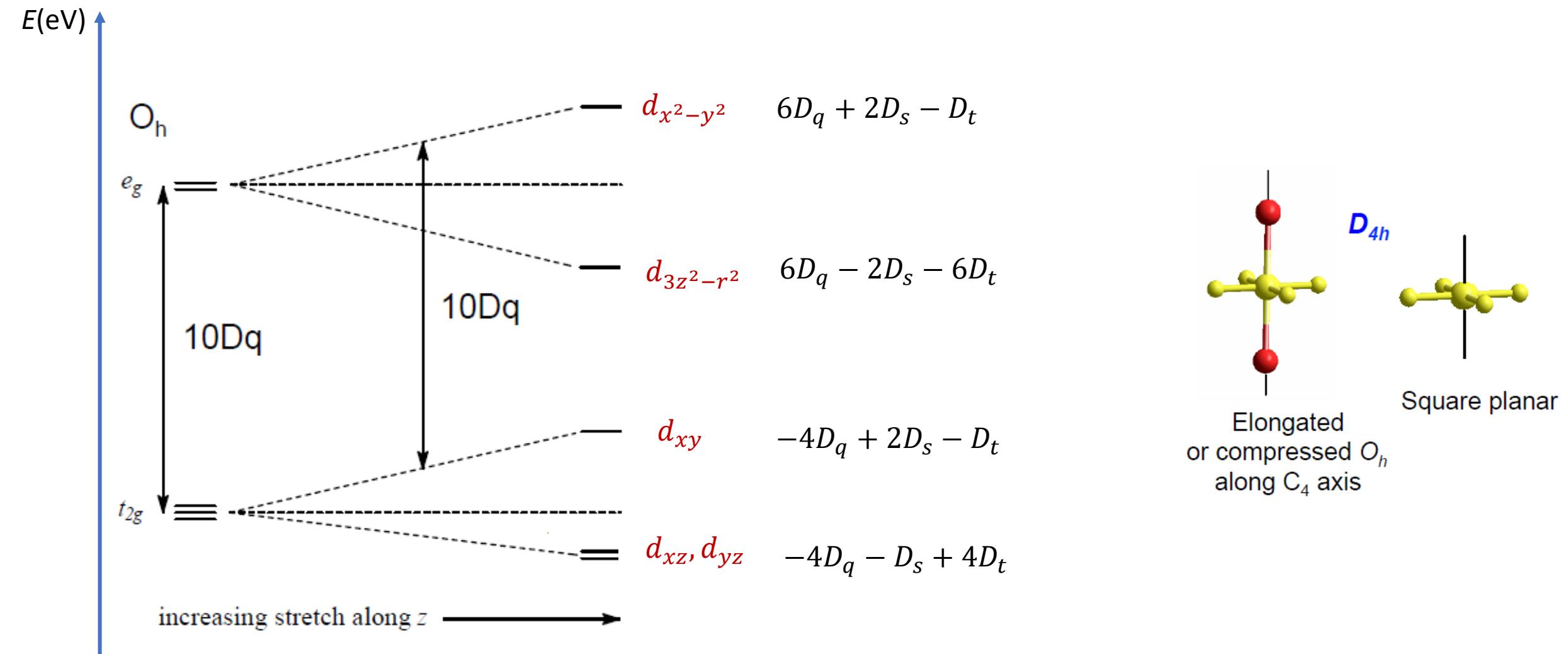
See exercise: 2.1

For example for an octahedral crystal field: $V(r) = \sum_{i=1}^6 e Z_i / r_i$



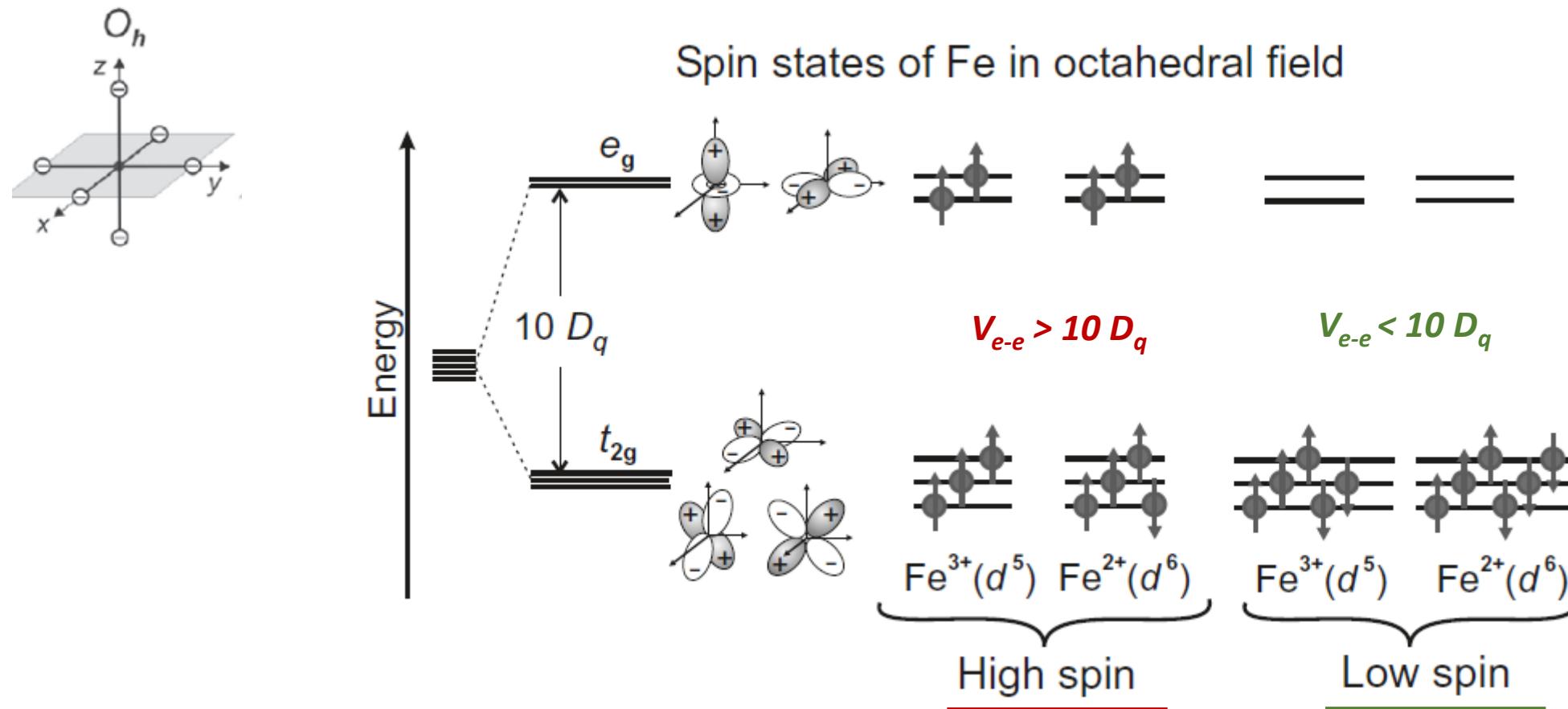
Qualitative arguments: the central atom orbitals pointing toward the ligand positions are higher in energy (due to Coulomb repulsion) than those orbitals avoiding the ligand positions:

- **t_{2g}** orbitals point towards the centres of the cube faces while the **e_g** orbitals point towards the centres of the cube edges.
- In T_d symmetry the latter points are closer to the ligands by a factor $\sqrt{2}$



The parameters D_q , D_s and D_t are used to describe the splitting of the d-orbitals induced by the crystal field independently on the symmetry

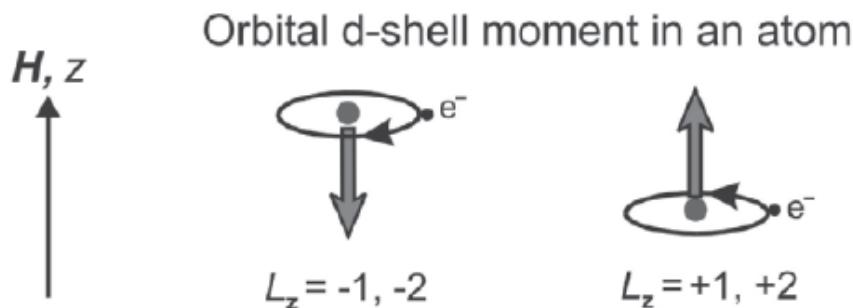
See exercise: 2.2



It is not anymore true that the spin S is maximized (failure of Hund's rules):
competition between e^- - e^- interaction and CF

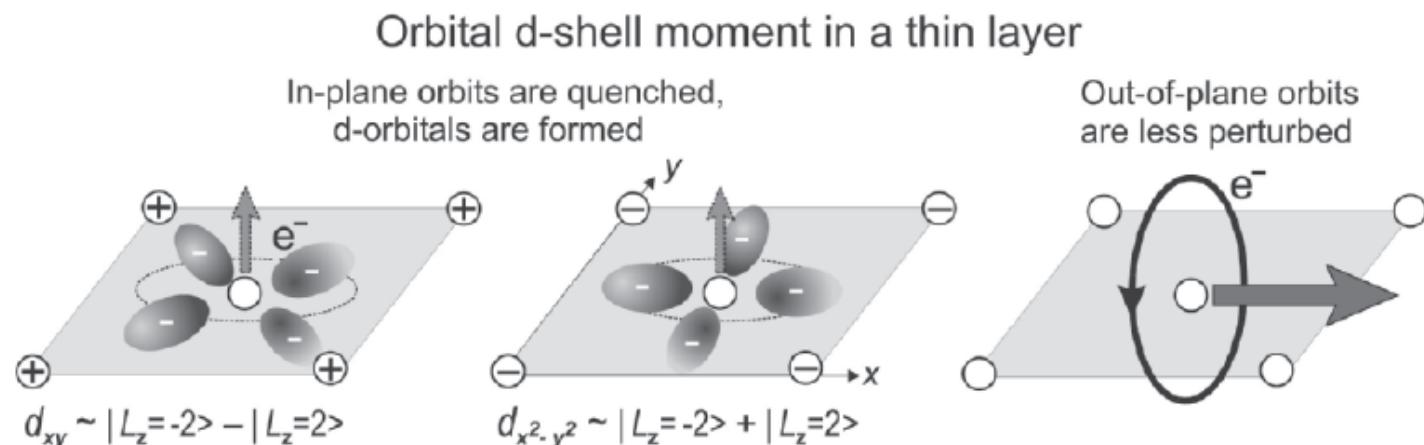
Quenching of the orbital moment due to bond formation

St&Sie06



the orbital moment arises from the electron precession (Y_i^m)

-> bond formation stops the precession



A strong directional bonding generates a reduction in the component of L perpendicular to the bond direction

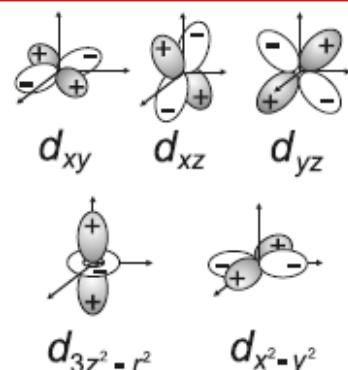
Central atom binds to four atoms in a plane

- The d electron will form a standing wave with a spatial shape depending on the distribution of the electronic charge on the neighbouring atoms (i.e. orbital motion frozen by the formation of bonds with the neighbouring atoms) -> out-of-plane orbital moment is quenched
- The orbital motion perpendicular to the bonding plane is less perturbed by the bonds -> in-plane orbital moment will stay unquenched

symmetry breaking implies reduced and anisotropic orbital moment

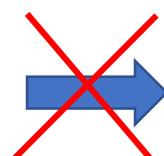
Quenching of the orbital moment by coordination

Wave function of an electron in one of the 3d orbitals (n=1..5): $\phi_n^\sigma = R_{3d} d_n \sigma$



$$\begin{aligned}
 d_{xy} &= \sqrt{\frac{15}{4\pi}} \frac{xy}{r^2} &= \frac{i}{\sqrt{2}} (Y_{2,-2} - Y_{2,+2}) \\
 d_{xz} &= \sqrt{\frac{15}{4\pi}} \frac{xz}{r^2} &= \frac{1}{\sqrt{2}} (Y_{2,-1} - Y_{2,+1}) \\
 d_{yz} &= \sqrt{\frac{15}{4\pi}} \frac{yz}{r^2} &= \frac{i}{\sqrt{2}} (Y_{2,-1} + Y_{2,+1}) \\
 d_{x^2-y^2} &= \sqrt{\frac{15}{16\pi}} \frac{(x^2 - y^2)}{r^2} &= \frac{1}{\sqrt{2}} (Y_{2,-2} + Y_{2,+2}) \\
 d_{3z^2-r^2} &= \sqrt{\frac{5}{16\pi}} \frac{(3z^2 - r^2)}{r^2} &= Y_{2,0}
 \end{aligned}$$

$$\langle d_n | L_z | d_n \rangle = 0$$



$$L = 0$$

Similar for $L_{x,y}$

Easy argument frequently used to justify the quenching of the orbital moment in bulk but it is incorrect (in fact $\langle d_n | L_z^2 | d_n \rangle \neq 0$)

Matrix element in unit of \hbar

$L_x d_{xz} = -i d_{xy}$	$L_y d_{xz} = i d_{x^2-y^2} - i \sqrt{3} d_{3z^2-r^2}$	$L_z d_{xz} = i d_{yz}$
$L_x d_{yz} = i \sqrt{3} d_{3z^2-r^2} + i d_{x^2-y^2}$	$L_y d_{yz} = i d_{xy}$	$L_z d_{yz} = -i d_{xz}$
$L_x d_{xy} = i d_{xz}$	$L_y d_{xy} = -i d_{yz}$	$L_z d_{xy} = -i 2 d_{x^2-y^2}$
$L_x d_{x^2-y^2} = -i d_{yz}$	$L_y d_{x^2-y^2} = -i d_{xz}$	$L_z d_{x^2-y^2} = i 2 d_{xy}$
$L_x d_{3z^2-r^2} = -i \sqrt{3} d_{yz}$	$L_y d_{3z^2-r^2} = i \sqrt{3} d_{xz}$	$L_z d_{3z^2-r^2} = 0$

It simply implies that L_z is not an observable since the two states with $\pm L_z$ are degenerate and then the mean L_z value is $L_z = 0$

[Fig00]; Sugano, Tanabe, Kamimura: Multiplets of transition-metal ions in crystals (Academic Press 1970) p.155-156

$L_x d_{xz} = -i d_{xy}$	$L_y d_{xz} = i d_{x^2-y^2}$	$L_z d_{xz} = i d_{yz}$
$L_x d_{yz} = i \sqrt{3} d_{3z^2-r^2}$	$L_y d_{yz} = i d_{xy}$	$L_z d_{yz} = -i d_{xz}$
$+ i d_{x^2-y^2}$		
$L_x d_{xy} = i d_{xz}$	$L_y d_{xy} = -i d_{yz}$	$L_z d_{xy} = -i 2 d_{x^2-y^2}$
$L_x d_{x^2-y^2} = -i d_{yz}$	$L_y d_{x^2-y^2} = -i d_{xz}$	$L_z d_{x^2-y^2} = i 2 d_{xy}$
$L_x d_{3z^2-r^2} = -i \sqrt{3} d_{yz}$	$L_y d_{3z^2-r^2} = i \sqrt{3} d_{xz}$	$L_z d_{3z^2-r^2} = 0$

L_z

	d_{z^2}	d_{xz}	d_{yz}	d_{xy}	$d_{x^2-y^2}$
d_{z^2}	0	0	0	0	0
d_{xz}	0	0	$-i$	0	0
d_{yz}	0	i	0	0	0
d_{xy}	0	0	0	0	$2i$
$d_{x^2-y^2}$	0	0	0	$-2i$	0

$$\langle d_n | L_z | d_n \rangle = 0$$

	d_{z^2}	d_{xz}	d_{yz}	d_{xy}	$d_{x^2-y^2}$
d_{z^2}	0	0	0	0	0
d_{xz}	0	0	$-i$	0	0
d_{yz}	0	i	0	0	0
d_{xy}	0	0	0	0	$2i$
$d_{x^2-y^2}$	0	0	0	$-2i$	0

\times

	d_{z^2}	d_{xz}	d_{yz}	d_{xy}	$d_{x^2-y^2}$
d_{z^2}	0	0	0	0	0
d_{xz}	0	0	$-i$	0	0
d_{yz}	0	i	0	0	0
d_{xy}	0	0	0	0	$2i$
$d_{x^2-y^2}$	0	0	0	$-2i$	0

L_z^2

	d_{z^2}	d_{xz}	d_{yz}	d_{xy}	$d_{x^2-y^2}$
d_{z^2}	0	0	0	0	0
d_{xz}	0	1	0	0	0
d_{yz}	0	0	1	0	0
d_{xy}	0	0	0	4	0
$d_{x^2-y^2}$	0	0	0	0	4

$$\langle d_n | L_z^2 | d_n \rangle \neq 0$$

It simply implies that L_z is not an observable since the two states with $\pm L_z$ are degenerate: --
 \Rightarrow the mean L_z value is $L_z = 0$ but $\langle d_n | L_z^2 | d_n \rangle \neq 0$

Orbital angular momentum about an axis is associated to transformation by rotation of pairs of orbitals. This holds only if:

- a) the two states of the pair are degenerate
- b) the pair orbitals can be transformed one in the other by a rotation (matrix element $\neq 0$)
- c) the second orbital must not contain an electron with the same spin as that in the first orbital (Pauli exclusion principle)

$$\langle d_{xy} | L_z | d_{x^2-y^2} \rangle = -2i$$

rotation by $\pi/4$ about the z axis transforming $d_{x^2-y^2}$ in d_{xy}

$$\langle d_{yz} | L_z | d_{xz} \rangle = i$$

rotation by $\pi/2$ about the z axis transforming d_{xz} in d_{yz}

$$\langle d_n | L_z | d_{3z^2-r^2} \rangle = 0$$

$d_{3z^2-r^2}$ cannot be transformed in any other orbital by a rotation about the z axis, thus no contribution to L_z

Matrix element in unit of \hbar

$L_x d_{xz}$	$= -i d_{xy}$	$L_y d_{xz}$	$= i d_{x^2-y^2}$	$L_z d_{xz}$	$= i d_{yz}$
$L_x d_{yz}$	$= i \sqrt{3} d_{3z^2-r^2}$ $+ i d_{x^2-y^2}$	$L_y d_{yz}$	$= i d_{xy}$	$L_z d_{yz}$	$= -i d_{xz}$
$L_x d_{xy}$	$= i d_{xz}$	$L_y d_{xy}$	$= -i d_{yz}$	$L_z d_{xy}$	$= -i 2 d_{x^2-y^2}$
$L_x d_{x^2-y^2}$	$= -i d_{yz}$	$L_y d_{x^2-y^2}$	$= -i d_{xz}$	$L_z d_{x^2-y^2}$	$= i 2 d_{xy}$
$L_x d_{3z^2-r^2}$	$= -i \sqrt{3} d_{yz}$	$L_y d_{3z^2-r^2}$	$= i \sqrt{3} d_{xz}$	$L_z d_{3z^2-r^2}$	$= 0$

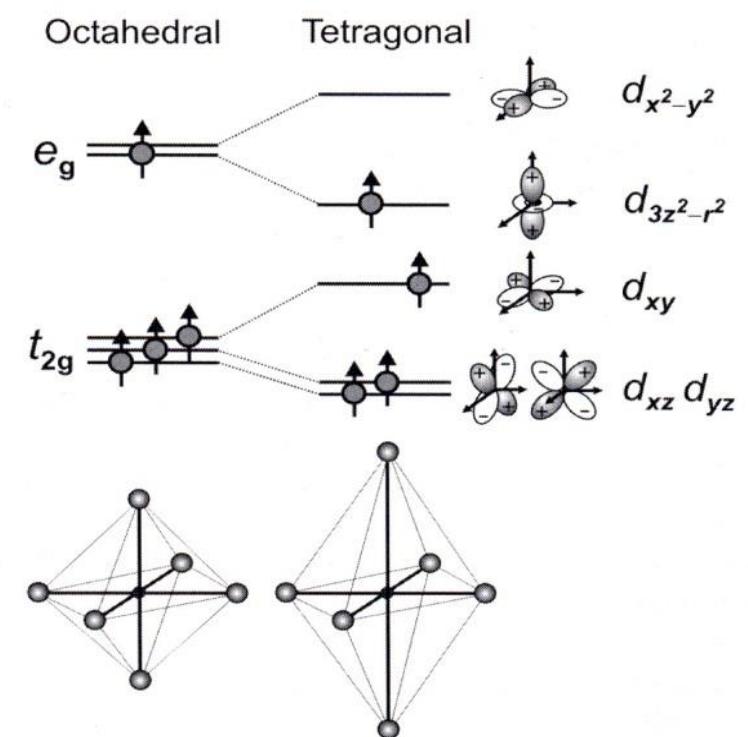
In a simple approximation we can use $| \langle d_i | L_{x(y,z)} | d_j \rangle |$ to evaluate the norm of the orbital angular momentum associated to the transformation by rotation of pairs of orbitals induced by the operators $L_{x(y,z)}$

Orbital angular momentum about an axis is associated to transformation by rotation of pairs of orbitals. This holds only if:

- a) the two states of the pair are degenerate
- b) there must not be an electron in the second orbital with the same spin as that in the first orbital

Ex: $3d^4$ in octahedral or tetragonal symmetry has $L = 0$:

- the $d_{x^2-y^2}$ and d_{xy} are split and hence do not contribute to the orbital moment (as a consequence of point a)
- the d_{yz} and d_{xz} are degenerate but can not be transformed by rotation (as a consequence of point b)



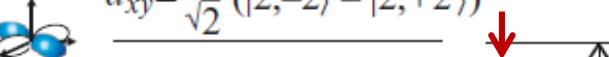
Ex: Co monolayer on Cu(100)

Co is a transition metal with electronic configuration given by [Ar] 4s² 3d⁷

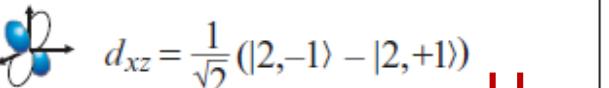
Assuming no charge transfer between Co and Cu, the d-orbital splitting due to the crystal field and occupation are:

Spin occupation

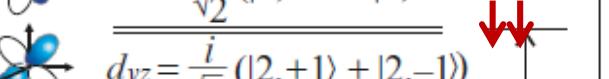
$$d_{xy} = \frac{i}{\sqrt{2}} (|2,-2\rangle - |2,+2\rangle)$$



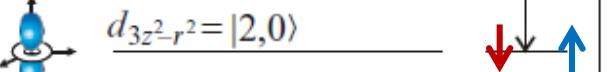
$$d_{xz} = \frac{1}{\sqrt{2}} (|2,-1\rangle - |2,+1\rangle)$$



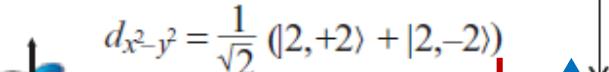
$$d_{yz} = \frac{i}{\sqrt{2}} (|2,+1\rangle + |2,-1\rangle)$$



$$d_{3z^2-r^2} = |2,0\rangle$$

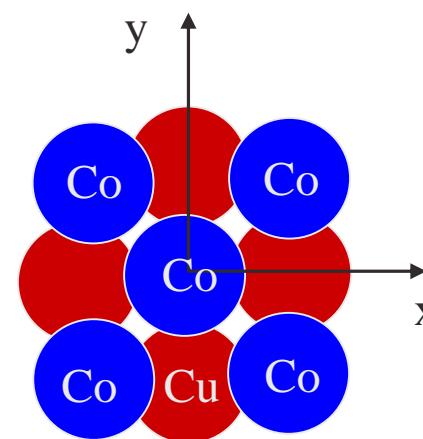


$$d_{x^2-y^2} = \frac{1}{\sqrt{2}} (|2,+2\rangle + |2,-2\rangle)$$



Ligand field

Top view



The Co d-orbitals pointing to another atom are higher in energy with respect to orbitals pointing to an empty space. Then, starting from the higher in energy:

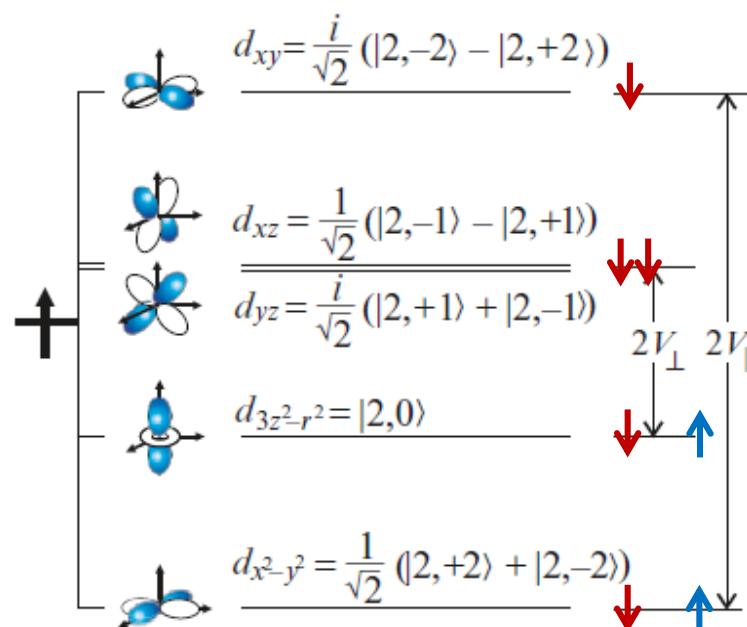
- d_{xy} is pointing directly against nearest Co neighbors and is the highest in energy
- d_{yz} d_{xz} are pointing in between two Cu atoms on the surface
- $d_{3z^2-r^2}$ is pointing in between 4 Cu atoms
- $d_{x^2-y^2}$ is flat on top of the Cu surface and it is not pointing against Co atoms (lowest in energy)

Ex: Co monolayer on Cu(100)

Co is a transition metal with electronic configuration given by [Ar] 4s² 3d⁷

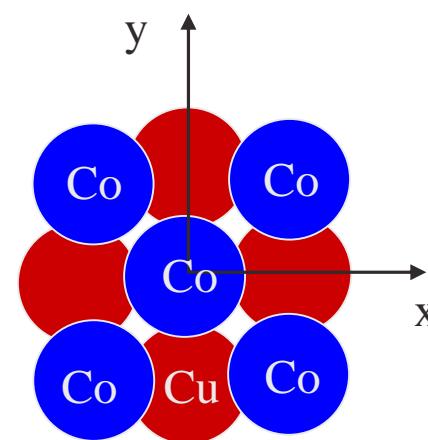
Assuming no charge transfer between Co and Cu, the d-orbital splitting due to the crystal field and occupation are:

Spin occupation



Ligand field

Top view



$L = 0$ because:

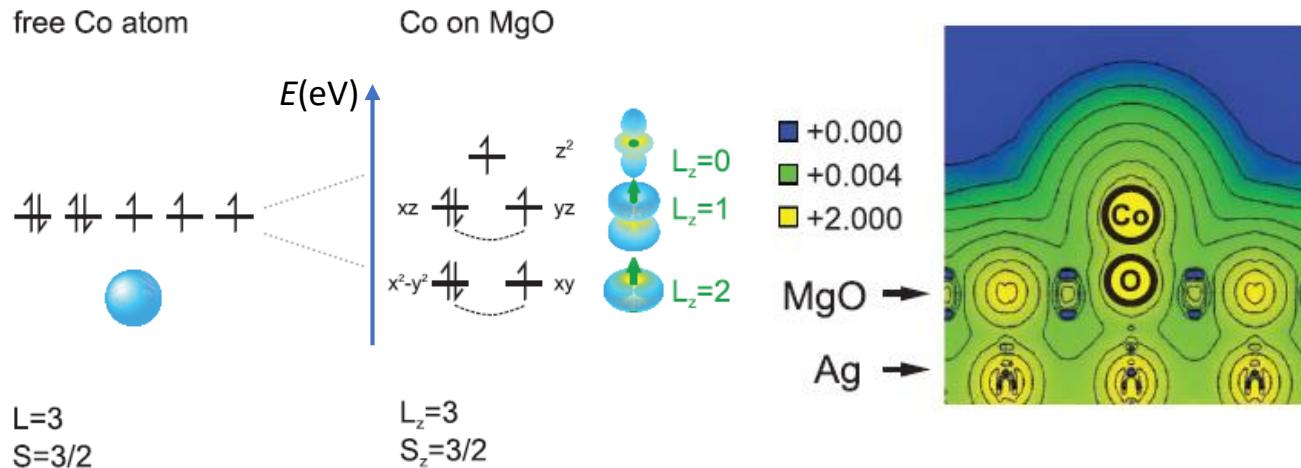
- $d_{3z^2-r^2}$ gives no contribution to L
- d_{xy} and $d_{x^2-y^2}$ can not transform one in the other because not degenerate
- d_{xz} and d_{yz} can not transform one in the other because they have the same spin

MTJ stack structures for different devices

	HDD read-head	TMR sensor	STT-MRAM
Substrate	6" or 8" AlTiC wafer	6" or 8" Si wafer	8" or 12" Si wafer
MTJ magnetization	In-plane MTJ	In-plane MTJ	Perpendicular MTJ
Typical stack structure	<p>FL: Free Layer RL: Reference Layer PL: Pinned Layer TB: Tunnel Barrier AF: Anti-Ferro Magnetic Layer TE: Top Electrode BE: Bottom Electrode</p>		

Large orbital moment for Co₁/MgO(100)

free Co atom



See exercise: 2.3

- Co atom on MgO adsorbs on top of oxygen
- **strong uniaxial bond preserves atomic values of L and S .**

From XMCD: $L_z = 2.9$; $S_z = 3/2$

- The uniaxial bond generates a strong out-of-plane anisotropy

$$L_x(L_y) = 0$$

$$\langle d_n | L_x | d_{3z^2-r^2} \rangle = 0$$

$$\langle d_{yz} | L_x | d_{x^2-y^2} \rangle = 0$$

$$\langle d_{xz} | L_x | d_{xy} \rangle = 0$$

$$\begin{array}{lll}
 L_x d_{xz} = -i d_{xy} & L_y d_{xz} = i d_{x^2-y^2} & L_z d_{xz} = i d_{yz} \\
 L_x d_{yz} = i \sqrt{3} d_{3z^2-r^2} + i d_{x^2-y^2} & L_y d_{yz} = i d_{xy} & L_z d_{yz} = -i d_{xz} \\
 L_x d_{xy} = i d_{xz} & L_y d_{xy} = -i d_{yz} & L_z d_{xy} = -i 2 d_{x^2-y^2} \\
 L_x d_{x^2-y^2} = -i d_{yz} & L_y d_{x^2-y^2} = -i d_{xz} & L_z d_{x^2-y^2} = i 2 d_{xy} \\
 L_x d_{3z^2-r^2} = -i \sqrt{3} d_{yz} & L_y d_{3z^2-r^2} = i \sqrt{3} d_{xz} & L_z d_{3z^2-r^2} = 0
 \end{array}$$

$$L_z = 3$$

$$|\langle d_n | L_x | d_{3z^2-r^2} \rangle| = 0$$

$$|\langle d_{xy} | L_z | d_{x^2-y^2} \rangle| = 2$$

$$|\langle d_{yz} | L_z | d_{xz} \rangle| = 1$$

Matrix elements are **zero** because d_{xy} and $d_{x^2-y^2}$ are **not degenerate** with d_{yz} and d_{xz}

Matrix elements are **non zero** because d_{xy} and $d_{x^2-y^2}$ are **degenerate** as well as d_{yz} and d_{xz}

Coordination frequently induces quenching of the orbital moment

However: H_{SO} mixes the ϕ_n^σ states and partially restores the orbital moment ($L \approx 0$)

In first approximation the wave function of a d electron becomes: $\Psi_n^+ = \phi_n^+ + \sum_i a_{n,i} \phi_i^+ + \sum_p b_{n,p} \phi_p^-$

Wave function of an electron in a $3d$ orbital ($i,p = 1 \dots 5$): $\phi_n^\sigma = R_{3d} d_n \sigma$

$$a_{n,i} = \frac{\langle \phi_n^+ | H_{SO} | \phi_i^+ \rangle}{E_n - E_i} = \zeta \frac{\langle d_n^+ | \mathbf{L} \cdot \mathbf{S} | d_i^+ \rangle}{E_n - E_i}$$

Orbital moment along direction α ($\alpha = x, y, z$) for the state d_n

$$L_{\alpha,n} = \langle \Psi_n^{+,-} | L_\alpha | \Psi_n^{+,-} \rangle \approx \zeta \sum_i \frac{|\langle d_n \sigma | L_\alpha | d_i \sigma \rangle|^2}{E_n - E_i}$$

$$\langle \Psi_n^\sigma | L_\alpha | \Psi_n^\sigma \rangle = \langle \phi_n^\sigma + \sum_i a_{n,i} \phi_i^\sigma | L_\alpha | \phi_n^\sigma + \sum_i a_{n,i} \phi_i^\sigma \rangle \approx \langle \phi_n^\sigma | L_\alpha | \sum_i a_{n,i} \phi_i^\sigma \rangle$$

Total orbital moment along direction α

$$L_\alpha = \sum_n^{\text{occ}} \langle \Psi_n^{+,-} | L_\alpha | \Psi_n^{+,-} \rangle \approx \zeta \sum_n^{\text{occ}} \sum_i \frac{|\langle d_n \sigma | L_\alpha | d_i \sigma \rangle|^2}{E_n - E_i}$$

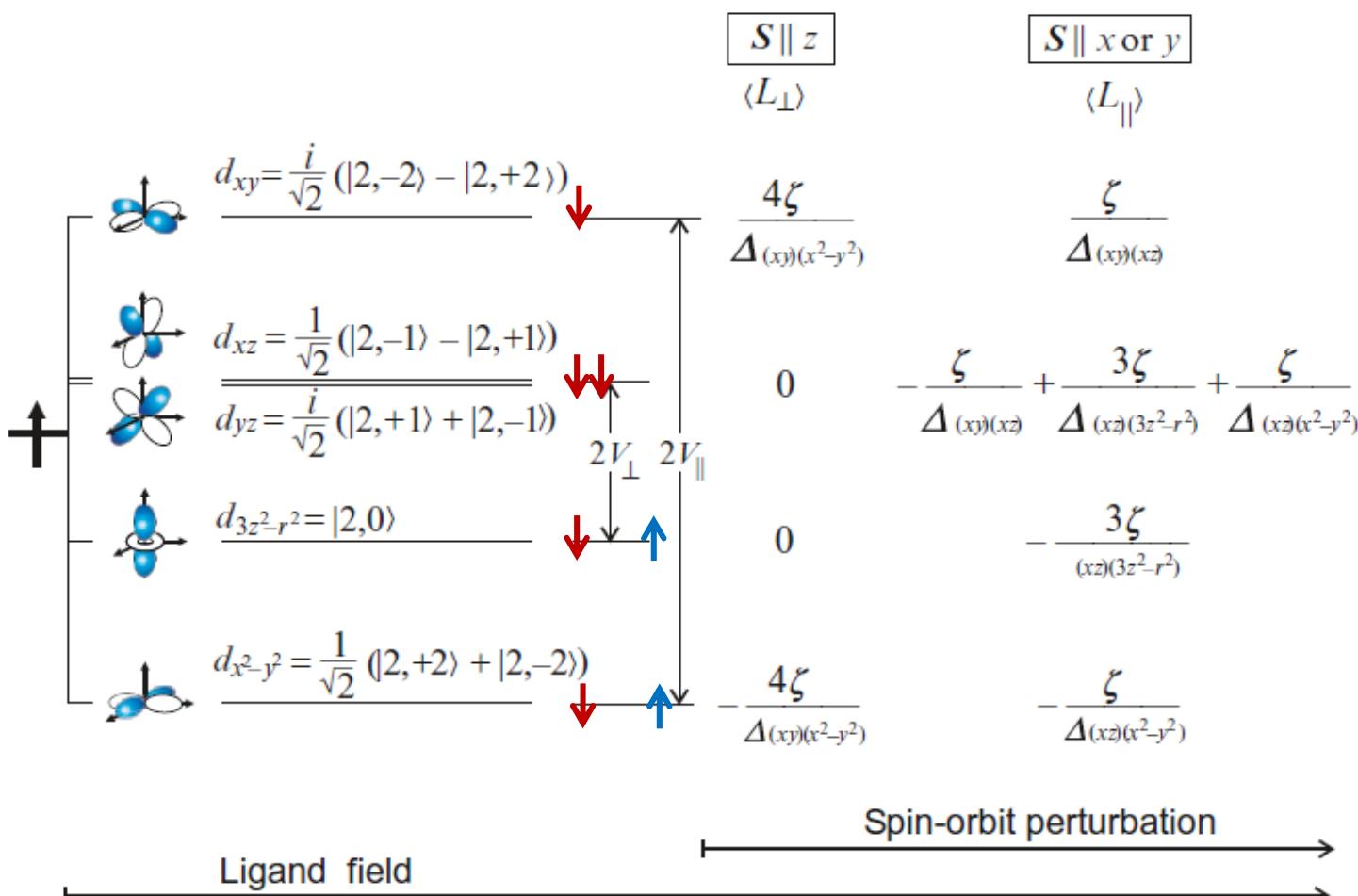
$L_x d_{xz}$	$= -i d_{xy}$	$L_y d_{xz}$	$= i d_{x^2-y^2}$	$L_z d_{xz}$	$= i d_{yz}$
$L_x d_{yz}$	$= i \sqrt{3} d_{3z^2-r^2}$	$L_y d_{yz}$	$= i d_{xy}$	$L_z d_{yz}$	$= -i d_{xz}$
$L_x d_{xy}$	$= i d_{xz}$	$L_y d_{xy}$	$= -i d_{yz}$	$L_z d_{xy}$	$= -i 2 d_{x^2-y^2}$
$L_x d_{x^2-y^2}$	$= -i d_{yz}$	$L_y d_{x^2-y^2}$	$= -i d_{xz}$	$L_z d_{x^2-y^2}$	$= i 2 d_{xy}$
$L_x d_{3z^2-r^2}$	$= -i \sqrt{3} d_{yz}$	$L_y d_{3z^2-r^2}$	$= i \sqrt{3} d_{xz}$	$L_z d_{3z^2-r^2}$	$= 0$

Ex: Co monolayer on Cu(100)

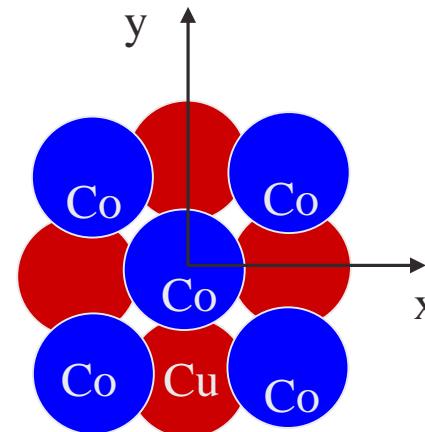
Co is a transition metal with electronic configuration given by

$$[\text{Ar}] 4s^2 3d^7$$

Assuming no charge transfer between Co and Cu, the level splitting due to the crystal field and occupation are:



Top view

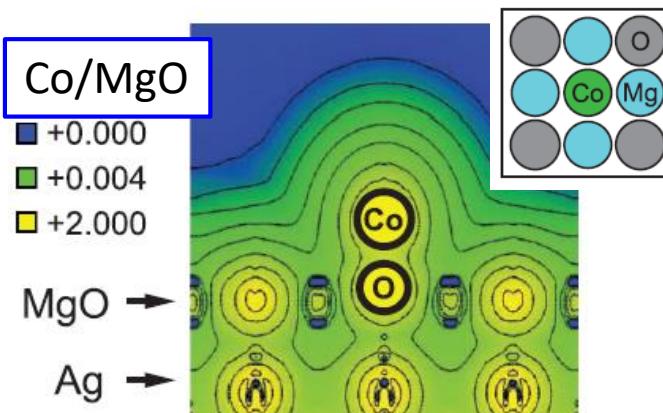


Spin-orbit partially restores the orbital momentum destroyed by the CF

$$\text{Ex.: } L_{z,xy} = \zeta \sum_i \frac{|\langle d_{xy} \sigma | L_z | d_i \sigma \rangle|^2}{E_{xy} - E_i} = \zeta \frac{|\langle d_{xy} + |L_z| d_{x^2-y^2} + \rangle|^2}{E_{xy} - E_{x^2-y^2}}$$

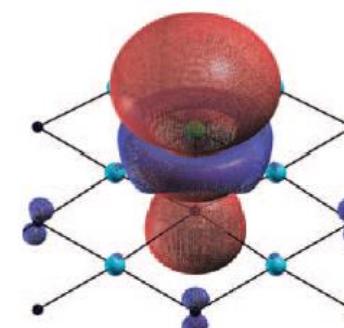
	d_{z^2}	d_{xz}	d_{yz}	d_{xy}	$d_{x^2-y^2}$
d_{z^2}	0	0	0	0	0
d_{xz}	0	0	$-i$	0	0
d_{yz}	0	i	0	0	0
d_{xy}	0	0	0	0	$2i$
$d_{x^2-y^2}$	0	0	0	$-2i$	0

Charge distribution



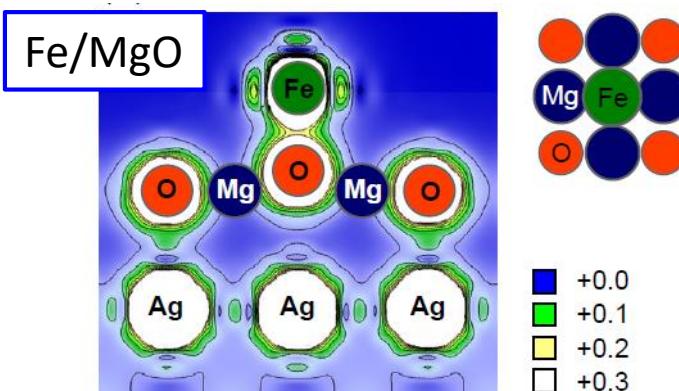
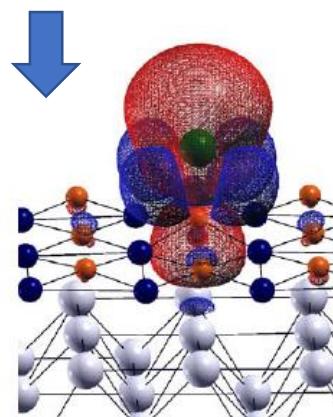
Spin distribution

Majority Minority

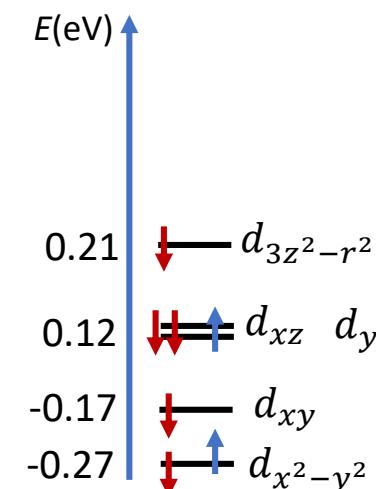
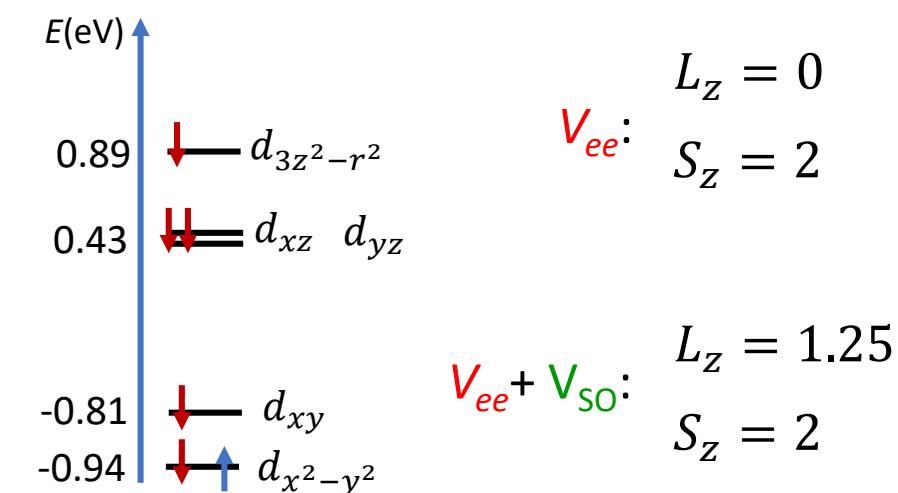


Axial (C_∞)
crystal field

Different interactions with neighbors atoms for Co and Fe



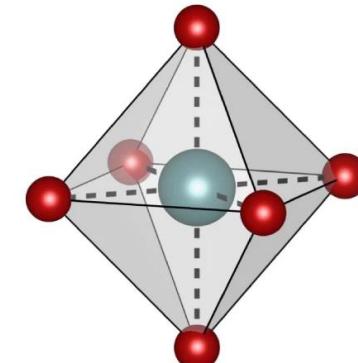
C_{4v}
crystal field



Magnetic properties of 3d ions

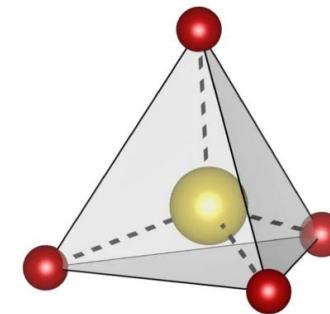
(a) Octahedral Ligand Field:

High Spin →			Low Spin →		
t_{2g}^1 3d ¹	t_{2g}^2 3d ²	t_{2g}^3 3d ³	$t_{2g}^3e_g^1$ 3d ⁴	$t_{2g}^3e_g^2$ 3d ⁵	$t_{2g}^4e_g^2$ 3d ⁶
Ti³⁺	V³⁺	Cr³⁺	Cr²⁺ Mn³⁺	Mn²⁺ Fe³⁺	Fe²⁺ Co³⁺
$S = \frac{1}{2}$	$S = 1$	$S = \frac{3}{2}$	$S = 2$	$S = \frac{5}{2}$	$S = 2$
$\mu_{cal} = 1.73 \mu_B$	$\mu_{cal} = 2.83 \mu_B$	$\mu_{cal} = 3.88 \mu_B$	$\mu_{cal} = 4.90 \mu_B$	$\mu_{cal} = 5.92 \mu_B$	$\mu_{cal} = 4.90 \mu_B$
$\mu_{obs} = 1.6-1.7$	$\mu_{obs} = 2.7-2.9$	$\mu_{obs} = 3.7-3.9$	$\mu_{obs} = 4.7-4.9$	$\mu_{obs} = 5.6-6.1$	$\mu_{obs} = 5.1-5.7$
t_{2g}^4 3d ⁴	t_{2g}^5 3d ⁵	t_{2g}^6 3d ⁶	$t_{2g}^6e_g^1$ 3d ⁷	$t_{2g}^6e_g^2$ 3d ⁸	$t_{2g}^6e_g^3$ 3d ⁹
Cr²⁺ Mn³⁺	Mn²⁺ Fe³⁺	Fe²⁺ Co³⁺	Co²⁺ Ni³⁺	Ni²⁺	Cu²⁺
$S = 1$	$S = \frac{1}{2}$	$S = 0$	$S = \frac{1}{2}$	$S = 1$	$S = \frac{1}{2}$
$\mu_{cal} = 2.83 \mu_B$	$\mu_{cal} = 1.73 \mu_B$	$\mu_{cal} = 0 \mu_B$	$\mu_{cal} = 1.73 \mu_B$	$\mu_{cal} = 2.83 \mu_B$	$\mu_{cal} = 1.73 \mu_B$
$\mu_{obs} = 3.2-3.3$	$\mu_{obs} = 1.8-2.1$	$\mu_{obs} = 0 \mu_B$	$\mu_{obs} = 1.7-1.9$	$\mu_{obs} = 2.9-3.3$	$\mu_{obs} = 1.7-2.2$



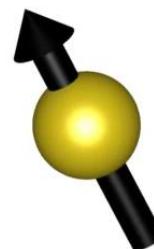
(b) Tetrahedral Ligand Field:

e_g^1 3d ¹	e_g^2 3d ²	$e_g^2t_{2g}^1$ 3d ³	$e_g^2t_{2g}^2$ 3d ⁴	$e_g^3t_{2g}^3$ 3d ⁵	$e_g^3t_{2g}^3$ 3d ⁶	$e_g^4t_{2g}^3$ 3d ⁷	$e_g^4t_{2g}^4$ 3d ⁸	$e_g^4t_{2g}^5$ 3d ⁹
Cr⁵⁺	Cr⁴⁺ Mn⁵⁺	Fe⁵⁺	n/a	Mn²⁺	Fe²⁺	Co²⁺	Ni²⁺	n/a
$S = \frac{1}{2}$	$S = 1$	$S = \frac{3}{2}$	$S = 2$	$S = \frac{5}{2}$	$S = 2$	$S = \frac{3}{2}$	$S = 1$	$S = \frac{1}{2}$
$\mu_{cal} = 1.73 \mu_B$	$\mu_{cal} = 2.83 \mu_B$	$\mu_{cal} = 3.88 \mu_B$	$\mu_{cal} = 4.90 \mu_B$	$\mu_{cal} = 5.92 \mu_B$	$\mu_{cal} = 4.90 \mu_B$	$\mu_{cal} = 3.88 \mu_B$	$\mu_{cal} = 2.83 \mu_B$	$\mu_{cal} = 1.73 \mu_B$
$\mu_{obs} = 1.7-1.8$	$\mu_{obs} = 2.6-2.8$	$\mu_{obs} = 3.6-3.7$		$\mu_{obs} = 5.9-6.2$	$\mu_{obs} = 5.3-5.5$	$\mu_{obs} = 4.2-4.8$	$\mu_{obs} = 3.7-4.0$	



Owing to quenching of orbital angular momentum, their calculated moments $\mu_{cal} = \frac{2\mu_B}{\hbar} \sqrt{S(S+1)}$ are best estimated from the spin-only, S , value with an isotropic Landé g-factor, $g = 2$, giving good agreement with the observed moments, μ_{obs} . When there are between four (3d⁴) or seven (3d⁷) electrons in the 3d-orbitals, either high-spin (yellow) or low-spin (pink) states can be observed for the octahedral case. The smaller crystal field splitting in the tetrahedral case means that high-spin states are always obtained, with very few exceptions. Observed moments that exceed the calculated moment, such as for Co²⁺, imply an intermediate spin-orbit coupling and an incomplete quenching of orbital angular momentum.

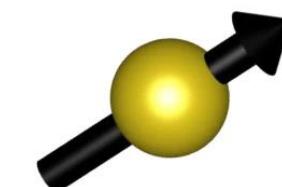
Magnetic properties of 4f ions



Hund's Rules Moments

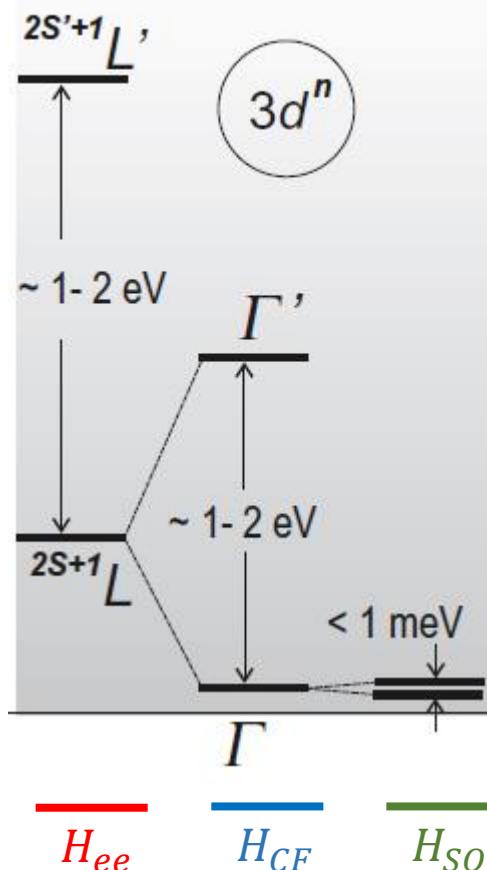
3+ Valence

$4f^1$ Ce³⁺	$4f^2$ Pr³⁺	$4f^3$ Nd³⁺	$4f^5$ Sm³⁺	$4f^6$ Eu³⁺	$4f^7$ Gd³⁺	$4f^8$ Tb³⁺	$4f^9$ Dy³⁺	$4f^{10}$ Ho³⁺	$4f^{11}$ Er³⁺	$4f^{12}$ Tm³⁺	$4f^{13}$ Yb³⁺
$J = 5/2$ $g_J = 6/7$ $\mu_{\text{cal}} = 2.54 \mu_B$ $\mu_{\text{obs}} = 2.5 \mu_B$	$J = 4$ $g_J = 4/5$ $\mu_{\text{cal}} = 3.58 \mu_B$ $\mu_{\text{obs}} = 3.5 \mu_B$	$J = 9/2$ $g_J = 8/11$ $\mu_{\text{cal}} = 3.62 \mu_B$ $\mu_{\text{obs}} = 3.4 \mu_B$	$J = 5/2$ $g_J = 2/7$ $\mu_{\text{cal}} = 0.85 \mu_B$ $\mu_{\text{obs}} = 1.7 \mu_B$	$J = 0 (L = S)$ $g_J = 0$ $\mu_{\text{cal}} = 0 \mu_B$ $\mu_{\text{obs}} = 3.4 \mu_B$	$J = S = 7/2$ $g_J = 2$ $\mu_{\text{cal}} = 7.94 \mu_B$ $\mu_{\text{obs}} = 7.9 \mu_B$	$J = 6$ $g_J = 3/2$ $\mu_{\text{cal}} = 9.72 \mu_B$ $\mu_{\text{obs}} = 9.8 \mu_B$	$J = 15/2$ $g_J = 4/3$ $\mu_{\text{cal}} = 10.65 \mu_B$ $\mu_{\text{obs}} = 10.6 \mu_B$	$J = 8$ $g_J = 5/4$ $\mu_{\text{cal}} = 10.61 \mu_B$ $\mu_{\text{obs}} = 10.4 \mu_B$	$J = 15/2$ $g_J = 6/5$ $\mu_{\text{cal}} = 9.58 \mu_B$ $\mu_{\text{obs}} = 9.5 \mu_B$	$J = 6$ $g_J = 7/6$ $\mu_{\text{cal}} = 7.56 \mu_B$ $\mu_{\text{obs}} = 7.6 \mu_B$	$J = 7/2$ $g_J = 8/7$ $\mu_{\text{cal}} = 4.54 \mu_B$ $\mu_{\text{obs}} = 4.5 \mu_B$
$4f^1$ Pr⁴⁺					$4f^7$ Tb⁴⁺						
$J = 5/2$ $g_J = 6/7$ $\mu_{\text{cal}} = 2.54 \mu_B$ $\mu_{\text{obs}} = 0.7 \mu_B$					$J = S = 7/2$ $g_J = 2$ $\mu_{\text{cal}} = 7.94 \mu_B$ $\mu_{\text{obs}} = 8.0 \mu_B$						

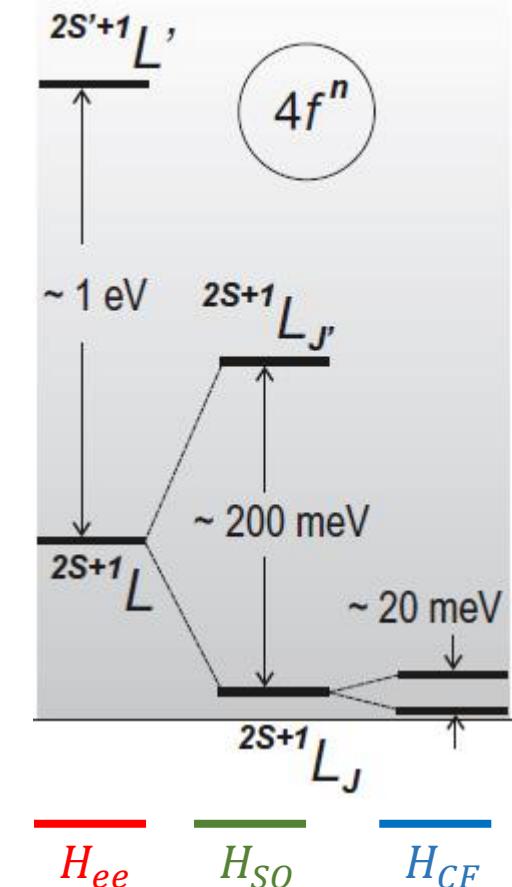


Excellent agreement between the calculated (Hund's rules) and observed moments is found for almost all rare earths. Poor agreement for Sm³⁺, Eu³⁺, and Pr⁴⁺ is due to the proximity of the next highest spin-orbit manifold. The blue shaded ions have an odd number of electrons and therefore Kramers ions, which are guaranteed to have at least a ground state doublet while the pink shaded ions are non-Kramers ions, where a non-magnetic singlet ground state is allowed by symmetry. Non-magnetic Ce⁴⁺ and Yb²⁺ are not included here.

Strength of interactions in 3d and 4f solids



interaction term	3d transition metals	4f rare earths
V_{ee}	1 eV	1 eV
V_{so}	50-100 meV	300-500 meV
$V_{\text{Zeeman}} (B=1T)$	0.1 -0.2 meV	0.1 -0.6 meV



The approximate size of the important interactions in solids for the $3d^n$ shell in transition metal ions and the $4f^n$ shell in rare earth ions, illustrated by the observed splitting in spectra of the ions in crystals.

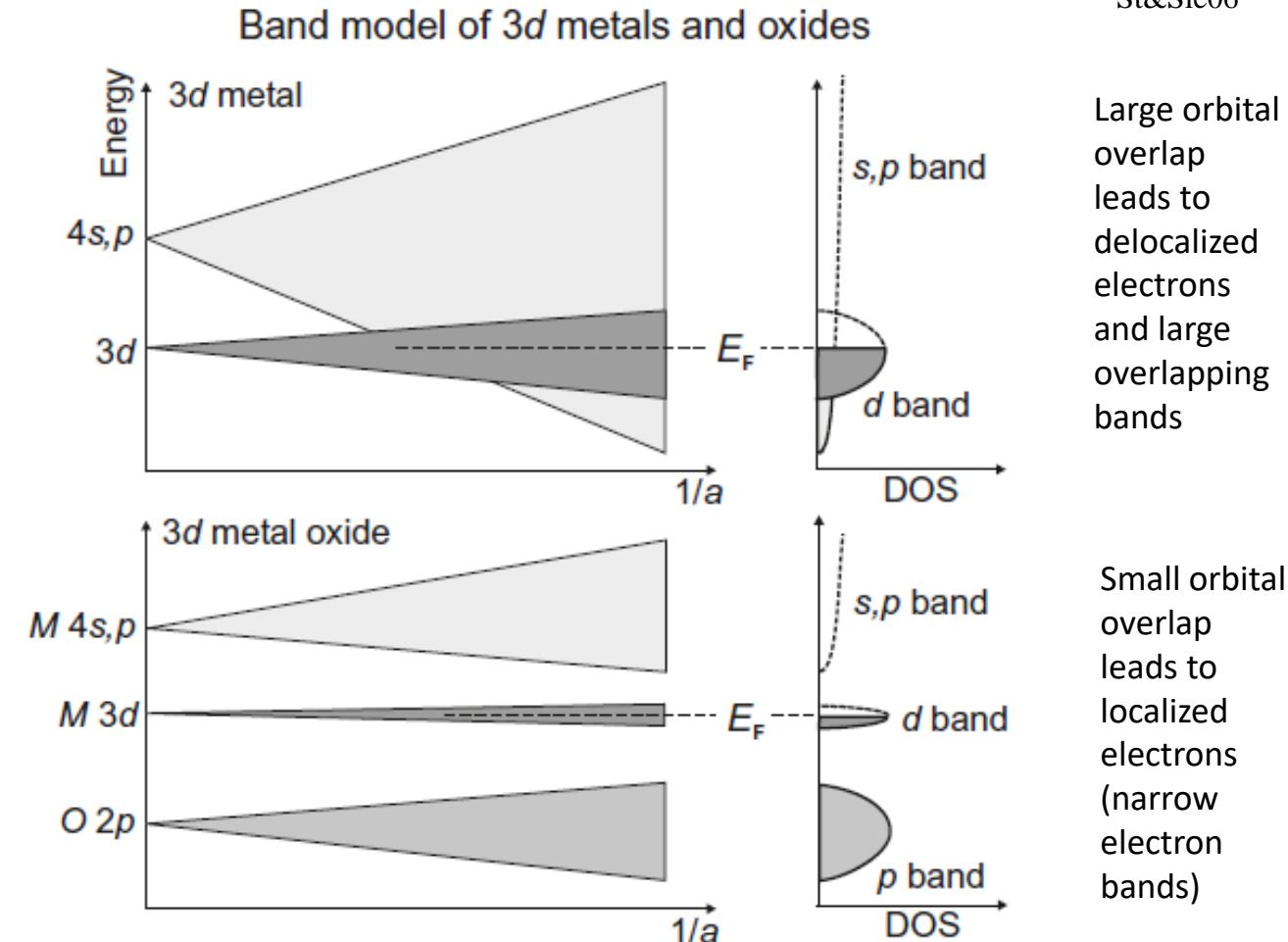
Note the opposite relative size of the CF and the spin-orbit splitting for the 3d and 4f systems.

Metals

Electrons are neither free nor entirely localized near the ion cores. Magnetic moments emerge from the balance of these two tendencies.

Insulating ionic compounds (e.g., transition-metal oxides)

The magnetic moment is determined by the type of atom and its ionic valence at each lattice site, site symmetry (crystal field).



- In a first approximation one may treat the **valence orbitals** of an insulating material, e.g., a transition metal oxide, as being **localized on each ion**. By knowing the number of electrons in unfilled shells, the atomic **magnetic moment is derived using the Hund's rules**.
- This procedure gives approximately **correct results for the 4f ions**, but fails to reproduce the correct moments **for the 3d ions**. The reason of this failure is mainly due to the **quenching of the orbital component of the magnetic moment induced by the crystal field**.

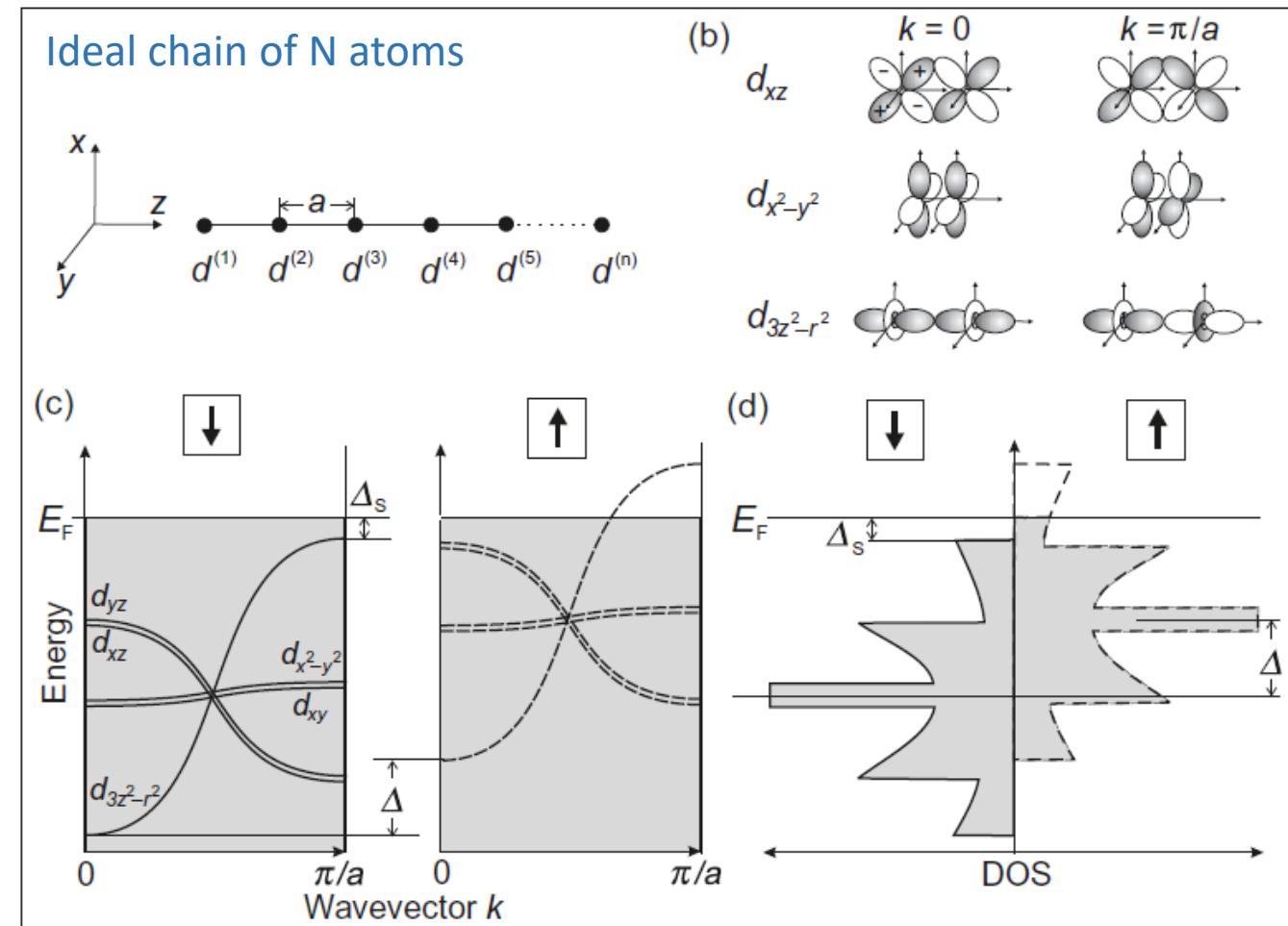
The periodic potential of a crystal breaks up the atom states and redistributes the valence electrons in Bloch states
 -> the quantum numbers nlm and atom position (\mathbf{r}) are replaced by the band index n , orbital character (lm) and the wave vector k

In band theory, combining orbitals on different atoms corresponds to the formation of Bloch functions which, for the case of a linear chain of N atoms, are written as:

$$\phi_j(\mathbf{k}) = \sum_q d_j^{(q)} e^{i k a q} \quad d_j = d_{xy}, d_{xz}, \dots$$

For $k=0$ $\phi_j(0) = \sum_q d_j^{(q)}$

For $k=\pi/a$ $\phi_j\left(\frac{\pi}{a}\right) = \sum_q (-1)^q d_j^{(q)}$

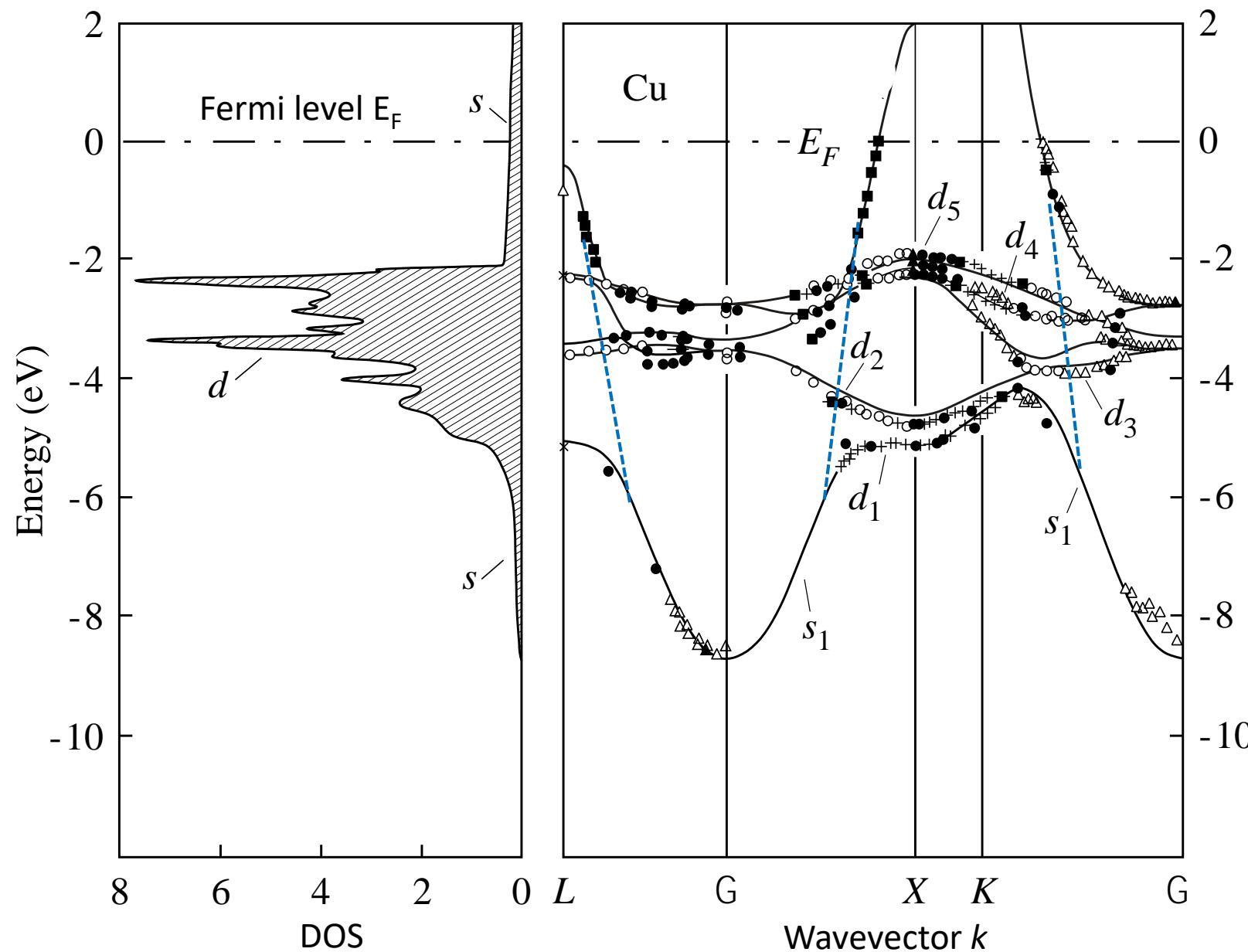


Orbitals pointing at each other (strong interaction) show dispersion

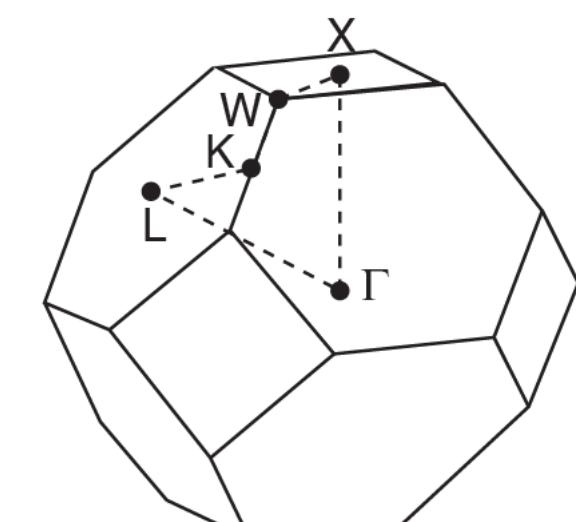
St&Sie06

Orbitals parallelly aligned (poor interaction) do not disperse (mostly k -independent)

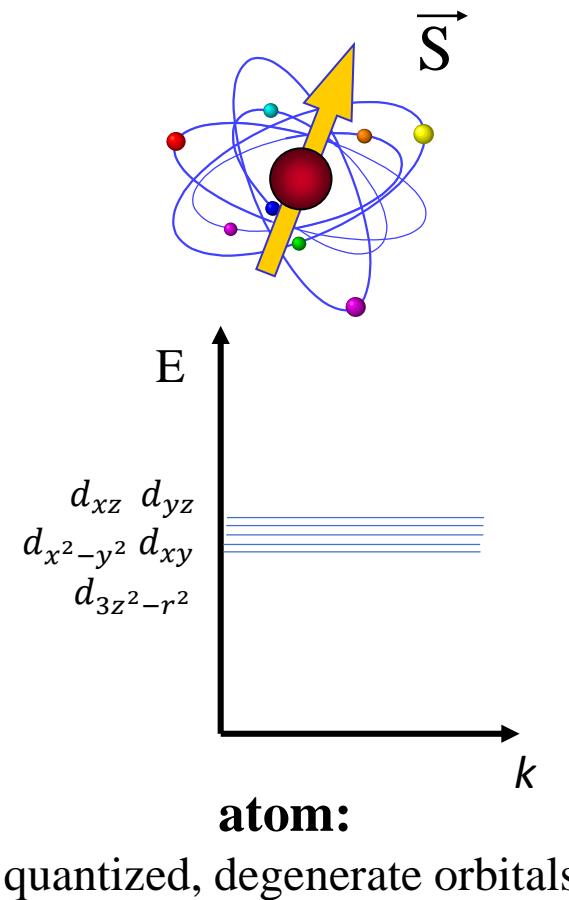
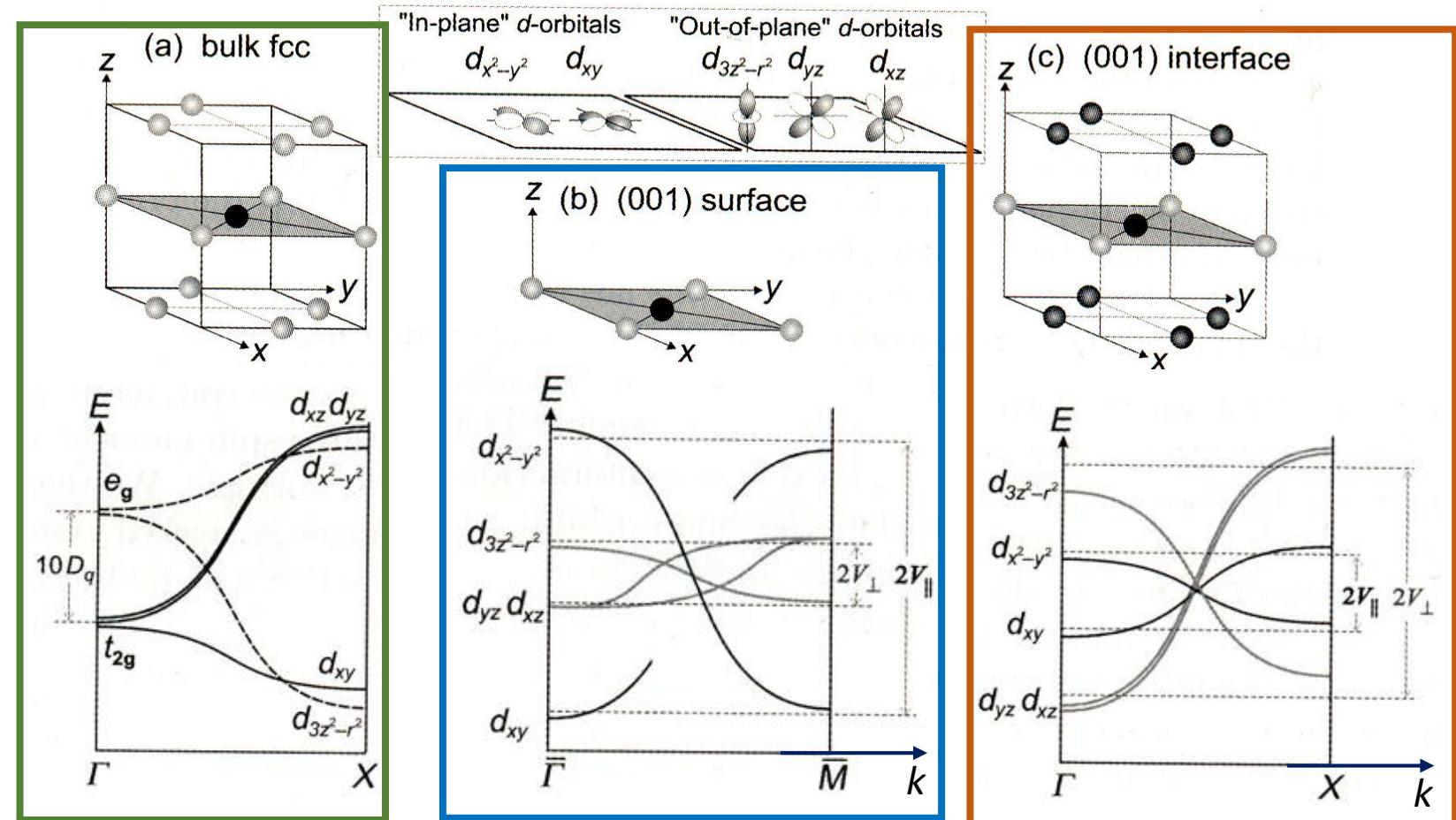
Cu band structure and density of states (DOS)



Cu: fcc crystal
first Brillouin zone:



d-state dispersion vs. CF symmetry vs. L quenching



Bulk: bands form due to overlapping of the wave functions of close atoms.

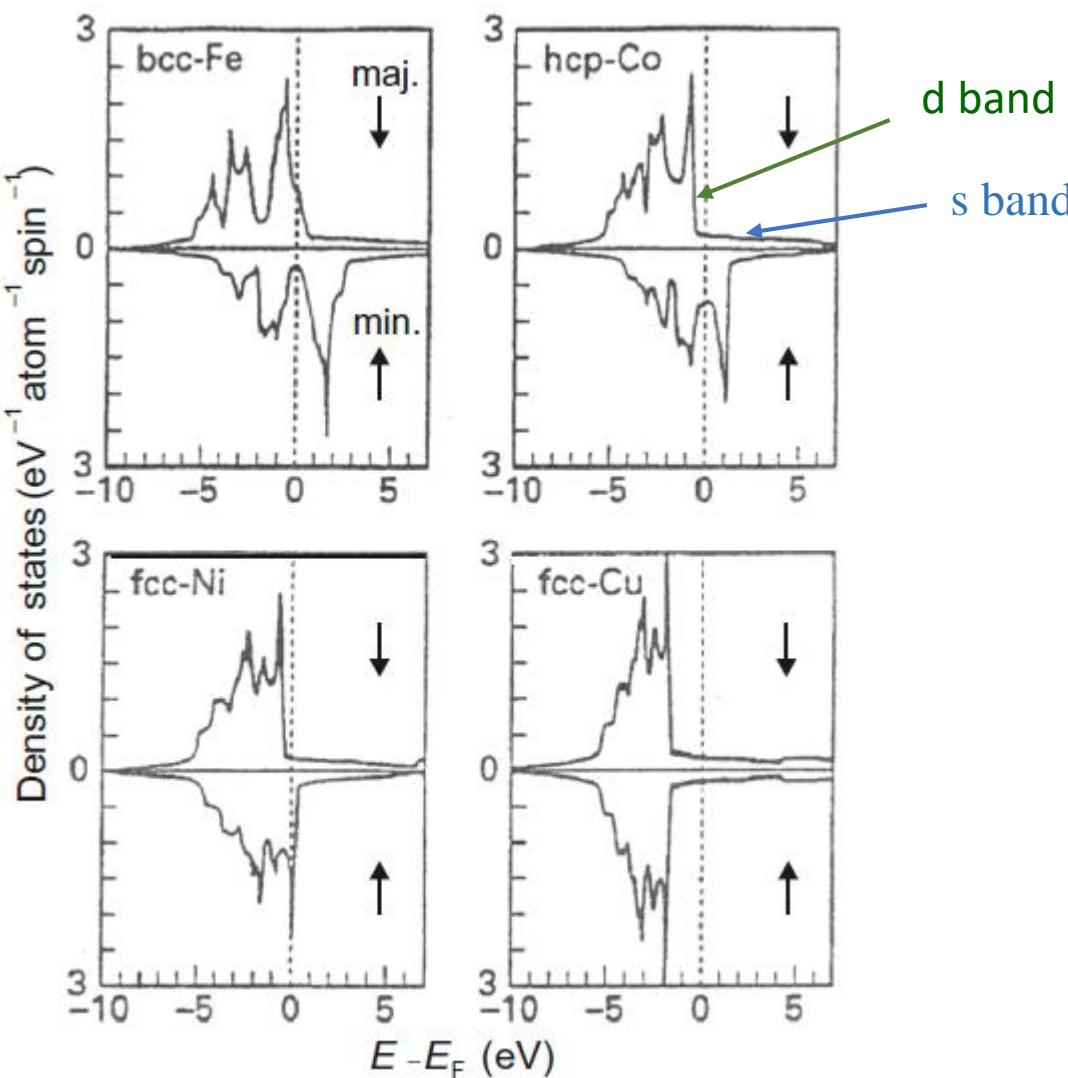
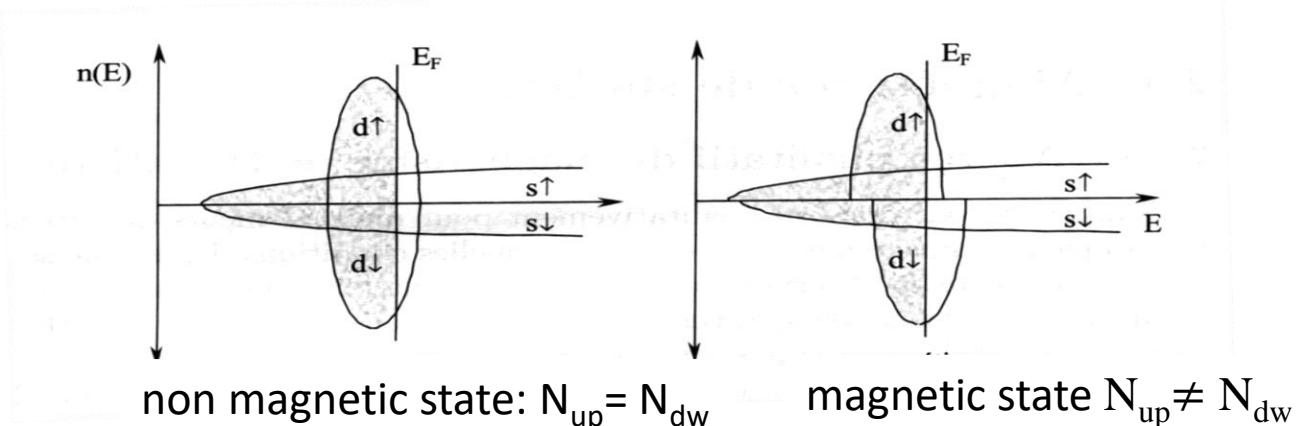
b) **free-standing monolayer:** mainly the in-plane d-orbitals feel the bonds and then show big splitting and dispersion in the (E, k) space while the out-of-plane d-orbitals stay mostly unperturbed $\rightarrow L_z$ quenched

c) **multilayer** with stronger out-of-plane than in-plane bonds: the situation is reversed $\rightarrow L_{x,y}$ quenched

a) **cubic structure** in-plane and out-of-plane bonds have similar strength and then the dispersion of the d-orbitals is similar $\rightarrow L_{x,y,z}$ quenched

Band contribution to the spin moment

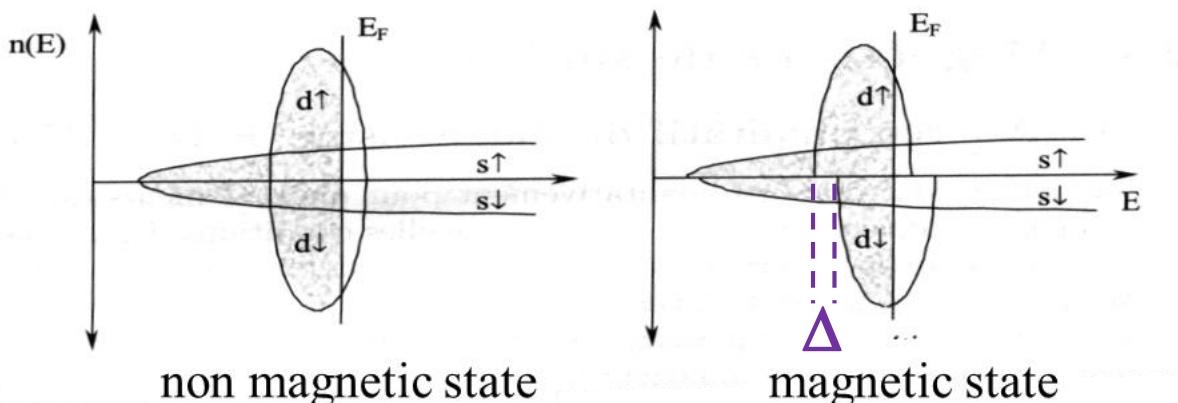
Spin moment is given by the unbalance between spin up and down



- s, p bands are extended (band width about 10 eV) -> contribute by about 5% to the total moment
- d bands are narrow (band width about 3 eV) -> their splitting determines the magnetism

Stoner model for spontaneous magnetization: exchange splitting

The total electron energy of N electrons is given by the sum of the energies of all occupied states



non magnetic state

magnetic state

$$N_{up} = N/2$$

$$N_{dw} = N/2$$

$$N_{up} = N/2 + n(E_F)\Delta/2$$

$$N_{dw} = N/2 - n(E_F)\Delta/2$$

$n(E)$: density of states

Coulomb interaction: $V_{ee} N_{up} N_{down}$

Each band shifts by $\Delta/2$ in opposite directions;
 N_{up} (N_{down}) increases (decreases) by $dN = n(E_F) \Delta/2$.
 Gain (loss) in energy is $= dN * \Delta/2$

$$\text{Kinetic energy variation} = \frac{\Delta}{2} (dN_{up} - dN_{dw}) = \frac{\Delta}{2} [n(E_F) \frac{\Delta}{2} - (-n(E_F) \frac{\Delta}{2})] = \frac{\Delta^2}{2} n(E_F)$$

$$\text{Coulomb (e-e) interaction variation} = V_{ee} \left[\frac{N^2}{4} + n(E_F) \frac{\Delta}{2} * \frac{N}{2} - n(E_F) \frac{\Delta}{2} * \frac{N}{2} - \frac{\Delta^2}{4} n^2(E_F) \right] - V_{ee} \frac{N^2}{4} = -V_{ee} \frac{\Delta^2}{4} n^2(E_F)$$

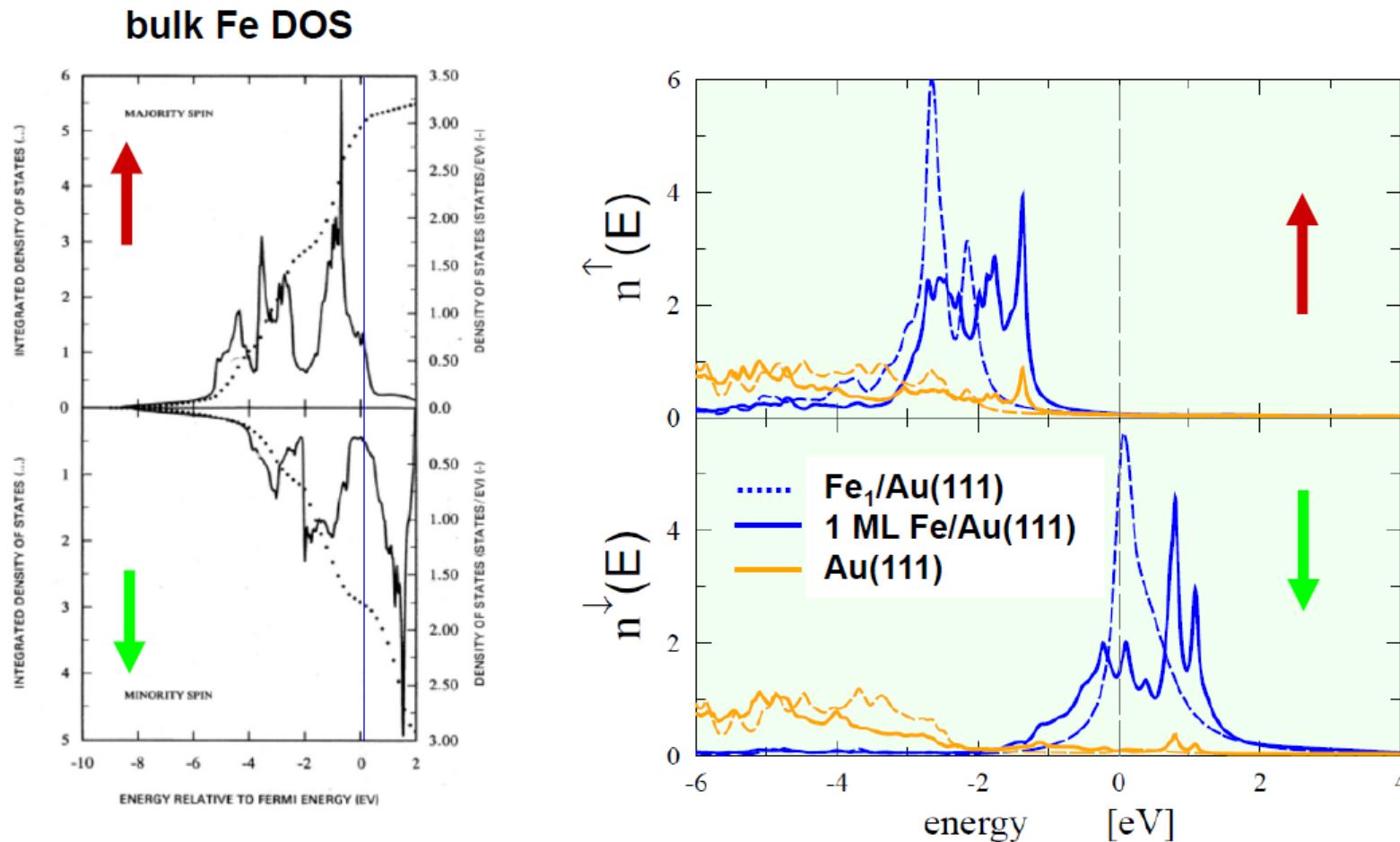
$$\text{Total electron energy variation } dE = \frac{\Delta^2}{2} n(E_F) - V_{ee} \frac{\Delta^2}{4} n^2(E_F) = \frac{\Delta^2}{2} n(E_F) \left(1 - \frac{V_{ee}}{2} n(E_F)\right)$$

$$\text{If } dE < 0 \text{ spontaneous magnetism appears} \rightarrow 1 - \frac{V_{ee}}{2} n(E_F) < 0 \quad (\text{Stoner criterion})$$

It depends on V_{ee} and $n(E_F)$ (both are material dependent)

Band narrowing in low-dimension leads to increased exchange splitting

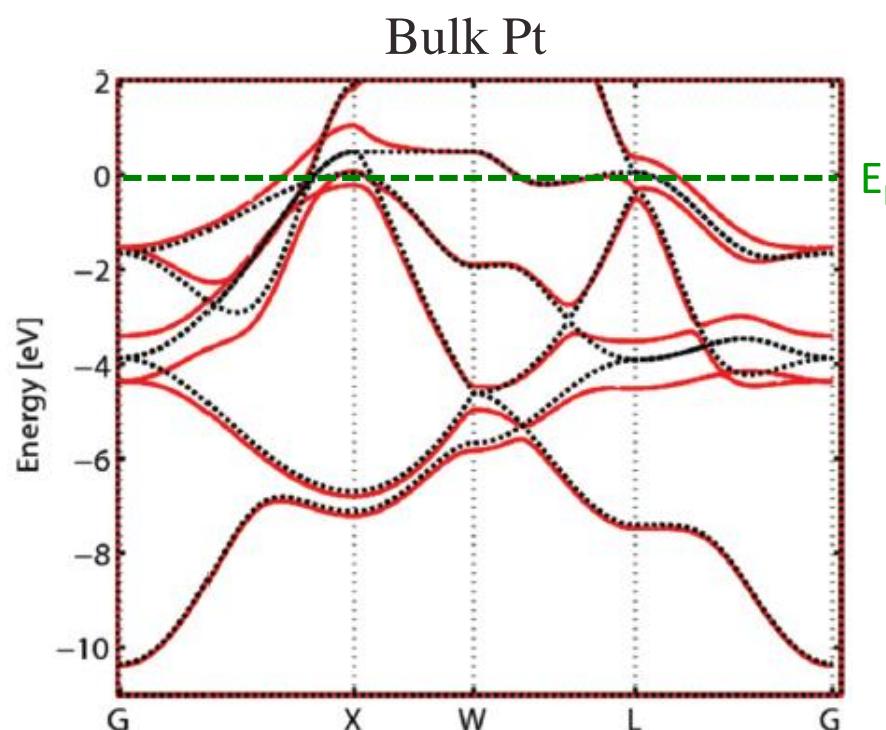
See exercise: 2.4



Moruzzi, Janak, and Williams,
Calculated electronic properties of metals
(Pergamon, 1978)

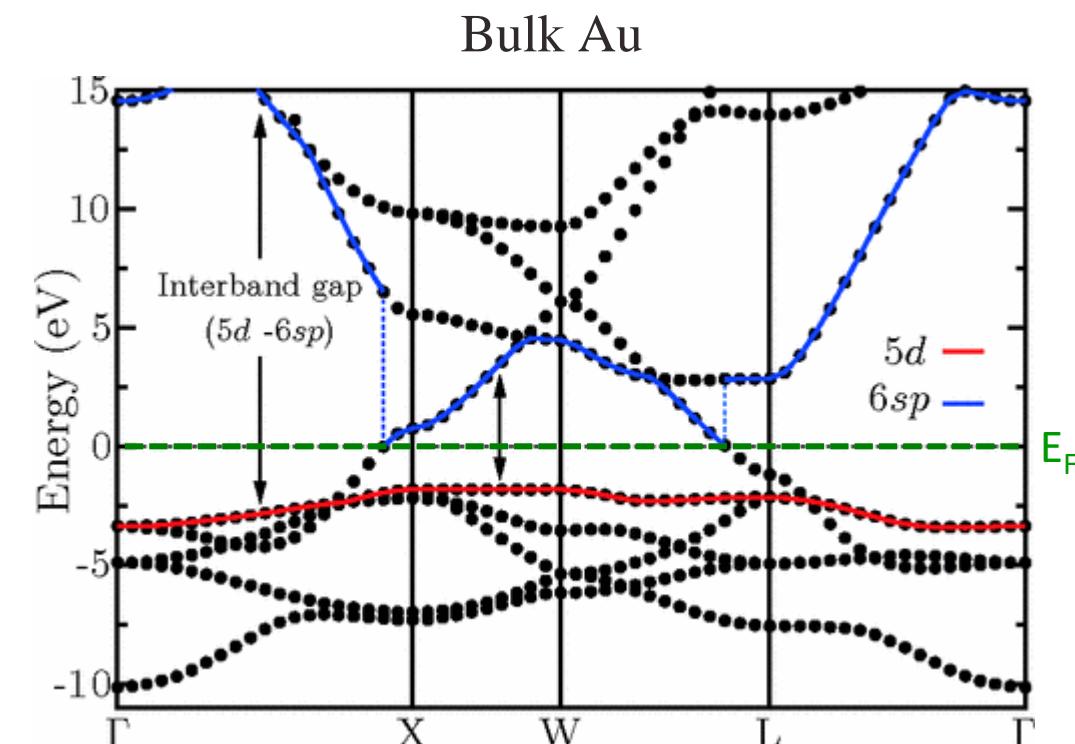
Sipr, Minar, and Ebert,
Europhys. Lett. 87, 67007(2009)

$$m_s(\text{Fe}_1) > m_s(\text{1ML}) > m_s(\text{Fe bulk})$$



Pt -> Fermi level crosses 5d band
-> close to show spontaneous magnetization
(need some extra interaction to promote band splitting)

28 Ni	29 Cu
58.69	63.55
$2 + 3d^8$	$2 + 3d^9$
629	
46 Pd	47 Ag
106.4	107.9
$2 + 4d^8$	$1 + 4d^{10}$
78 Pt	79 Au
195.1	197.0
$2 + 5d^8$	$1 + 5d^{10}$

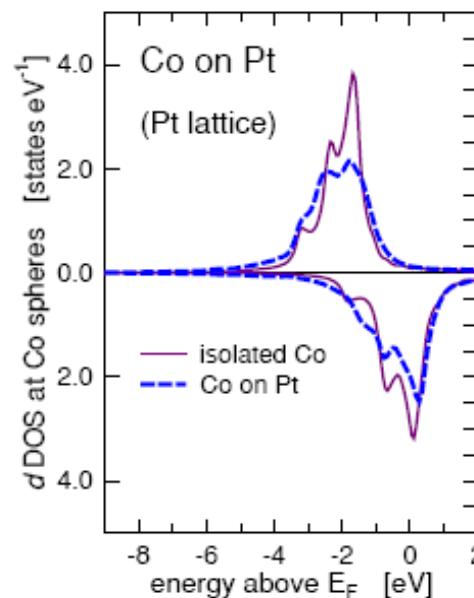
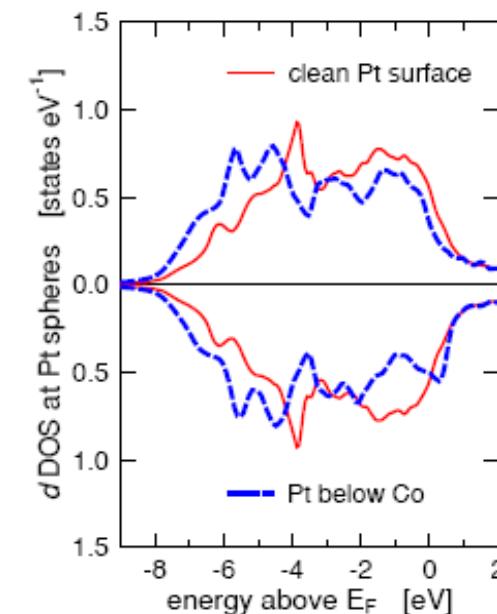


Au -> 5d states well below Fermi level
-> difficult to induce magnetism
(big band splitting is necessary to have magnetism)

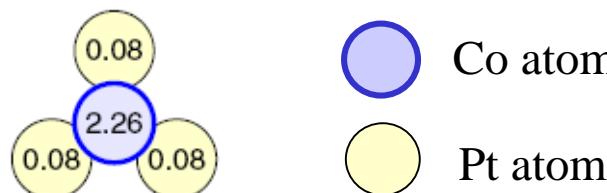
The same is true if we look at Pd and Ag

See exercise: 2.5

Co monomer on Pt: hybridization with the substrate

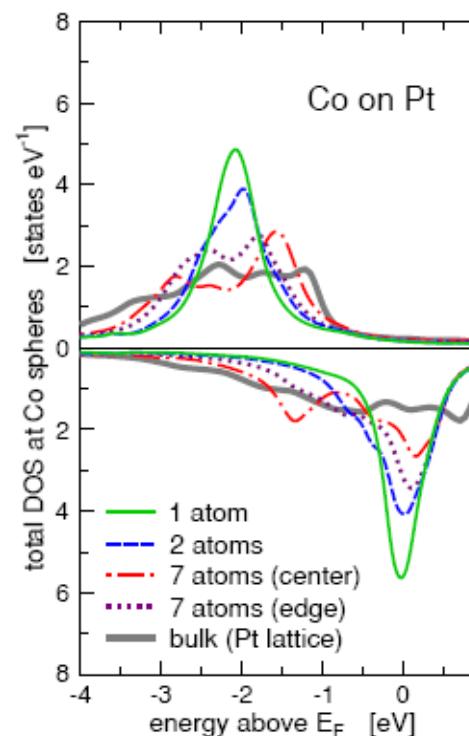


Asymmetry in the Pt LDOS at E_F when covered by Co->
induced magnetic moment in the Pt(111)



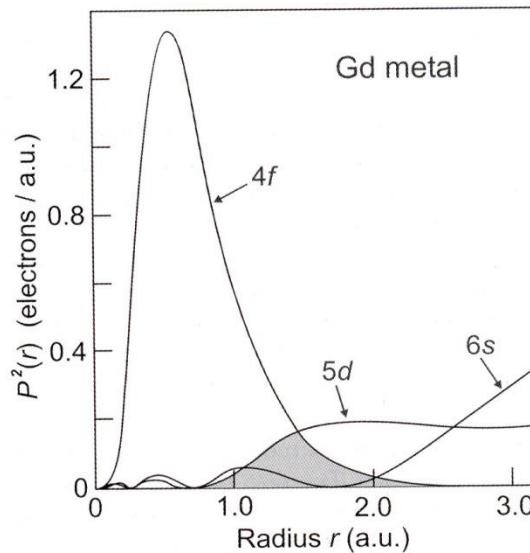
Size dependence

Reduced asymmetry by increasing the cluster size ->
reduced magnetic moment



3d metals vs 4f lanthanides

Electronic configuration gas phase: $[\text{Xe}] 6s^2 4f^N$
(exception for Gd: $[\text{Xe}] 6s^1 5d^1 4f^7$)



4f states are strongly localized ->
do not participate to bonding
CF ~ 10 meV
SOC ~ 200 meV
Coulomb repulsion $\sim 1-10$ eV

The difference between atomic and bulk
case is the electronic configuration.

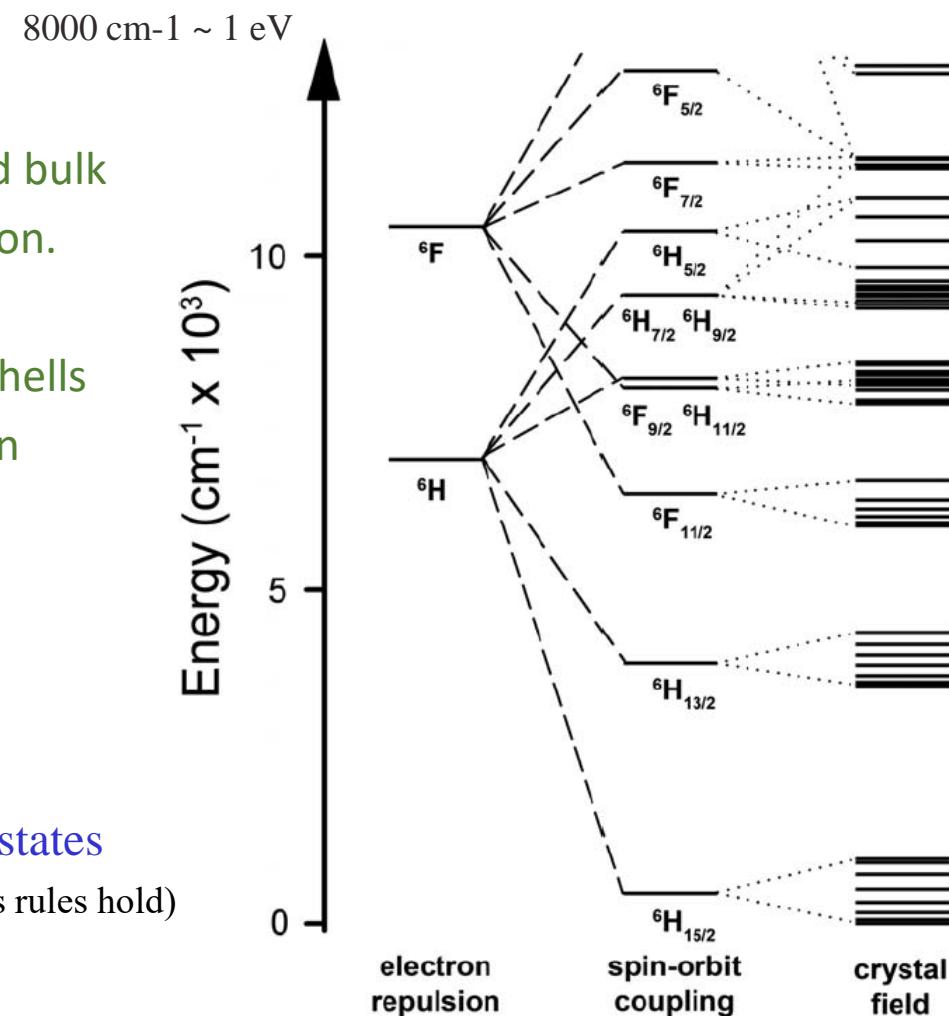
In bulk: $[\text{Xe}] 4f^{N-1} 5d^1 6s^2$
with the 3 electrons in the outer shells
participating to bond formation

- Magnetic moment defined by the 4f states
- L unquenched (small CF for the 4f, Hund's rules hold)

Dy³⁺ (6s⁰ 4f⁹)

+3	+2	+1	0	-1	-2	-3
↑↓	↑↓	↑	↑	↑	↑	↑

$L = 5; S = 5/2 \rightarrow$ ground state ${}^6\text{H}_{15/2}$



Single atom: $V_{ee} \Rightarrow \frac{S}{L}$ $V_{ee} + V_{SO} \Rightarrow J = S+L$

Ensemble of atoms: $V_{ee} \Rightarrow \frac{S}{L}$

3d $V_{ee} + V_{CF} \Rightarrow \frac{S}{L} \approx 0$ $V_{ee} + V_{CF} + V_{SO} \Rightarrow \frac{L \geq 0}{J = S+L}$

4f $V_{ee} + V_{SO} \Rightarrow J = S+L$ $V_{ee} + V_{SO} + V_{CF} \Rightarrow J = S+L$